Machine learning and geostatistical approaches for estimating aboveground biomass in Chinese subtropical forests

森林资源清查 环境科学 随机森林 遥感 克里金 均方误差 生物量(生态学) 预测建模 林业 生态系统 森林经营 数学 统计 地理 农林复合经营 计算机科学 生态学 机器学习 生物
作者
Huiyi Su,Wenjuan Shen,Jingrui Wang,Arshad Ali,Mingshi Li
出处
期刊:Forest Ecosystems [Springer Science+Business Media]
卷期号:7 (1) 被引量:10
标识
DOI:10.1186/s40663-020-00276-7
摘要

Abstract Background Aboveground biomass (AGB) is a fundamental indicator of forest ecosystem productivity and health and hence plays an essential role in evaluating forest carbon reserves and supporting the development of targeted forest management plans. Methods Here, we proposed a random forest/co-kriging framework that integrates the strengths of machine learning and geostatistical approaches to improve the mapping accuracies of AGB in northern Guangdong Province of China. We used Landsat time-series observations, Advanced Land Observing Satellite (ALOS) Phased Array L-band Synthetic Aperture Radar (PALSAR) data, and National Forest Inventory (NFI) plot measurements, to generate the forest AGB maps at three time points (1992, 2002 and 2010) showing the spatio-temporal dynamics of AGB in the subtropical forests in Guangdong, China. Results The proposed model was capable of mapping forest AGB using spectral, textural, topographical variables and the radar backscatter coefficients in an effective and reliable manner. The root mean square error of the plot-level AGB validation was between 15.62 and 53.78 t∙ha − 1 , the mean absolute error ranged from 6.54 to 32.32 t∙ha − 1 , the bias ranged from − 2.14 to 1.07 t∙ha − 1 , and the relative improvement over the random forest algorithm was between 3.8% and 17.7%. The largest coefficient of determination (0.81) and the smallest mean absolute error (6.54 t∙ha − 1 ) were observed in the 1992 AGB map. The spectral saturation effect was minimized by adding the PALSAR data to the modeling variable set in 2010. By adding elevation as a covariable, the co-kriging outperformed the ordinary kriging method for the prediction of the AGB residuals, because co-kriging resulted in better interpolation results in the valleys and plains of the study area. Conclusions Validation of the three AGB maps with an independent dataset indicated that the random forest/co-kriging performed best for AGB prediction, followed by random forest coupled with ordinary kriging (random forest/ordinary kriging), and the random forest model. The proposed random forest/co-kriging framework provides an accurate and reliable method for AGB mapping in subtropical forest regions with complex topography. The resulting AGB maps are suitable for the targeted development of forest management actions to promote carbon sequestration and sustainable forest management in the context of climate change.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
果果完成签到,获得积分10
1秒前
WYN发布了新的文献求助10
1秒前
妮妮完成签到,获得积分10
1秒前
2秒前
lcw完成签到,获得积分10
2秒前
CYY发布了新的文献求助10
3秒前
哭泣以筠完成签到 ,获得积分10
5秒前
5秒前
6秒前
大仙儿完成签到 ,获得积分10
6秒前
Linda发布了新的文献求助10
7秒前
7秒前
muyun发布了新的文献求助10
8秒前
HEIKU应助科研通管家采纳,获得10
8秒前
HEIKU应助科研通管家采纳,获得10
8秒前
cdercder应助科研通管家采纳,获得60
8秒前
科目三应助科研通管家采纳,获得10
8秒前
无花果应助科研通管家采纳,获得10
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
orixero应助科研通管家采纳,获得10
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
8秒前
冯不可完成签到,获得积分10
9秒前
10秒前
Archy完成签到,获得积分10
12秒前
默默白开水完成签到 ,获得积分10
12秒前
Sun发布了新的文献求助10
12秒前
12秒前
黄诺发布了新的文献求助10
14秒前
席冥完成签到,获得积分10
14秒前
汉堡包应助小猫多鱼采纳,获得10
15秒前
重要的小刘完成签到,获得积分10
15秒前
wahaha发布了新的文献求助10
15秒前
Sun完成签到,获得积分10
17秒前
wxy完成签到,获得积分10
17秒前
羁绊完成签到,获得积分10
17秒前
lu完成签到,获得积分10
17秒前
lcw发布了新的文献求助10
17秒前
HEAUBOOK应助wbr采纳,获得10
23秒前
23秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780337
求助须知:如何正确求助?哪些是违规求助? 3325661
关于积分的说明 10223791
捐赠科研通 3040806
什么是DOI,文献DOI怎么找? 1669006
邀请新用户注册赠送积分活动 798963
科研通“疑难数据库(出版商)”最低求助积分说明 758648