GTP酶
生物
鸟嘌呤核苷酸交换因子
效应器
毒力
细胞生物学
基因
分生孢子
信号转导
MAPK/ERK通路
遗传学
作者
Ahai Chen,Zhenzhen Ju,Jinli Wang,Jing Wang,Hongkai Wang,Jiayu Wu,Yanni Yin,Youfu Zhao,Zhonghua Ma,Yun Chen
标识
DOI:10.1111/1462-2920.15129
摘要
Ras GTPases act as molecular switches to control various cellular processes by coupling integrated signals in eukaryotes. Activities of Ras GTPases are triggered by Ras GTPase guanine nucleotide exchange factors (RasGEFs) in general, whereas the role of RasGEF in plant pathogenic fungi is largely unknown. In this study, we characterized the only RasGEF protein in Fusarium graminearum, FgCdc25, by combining genetic, cytological and phenotypic strategies. FgCdc25 directly interacted with RasGTPase FgRas2, but not FgRas1, to regulate growth and sexual reproduction. Mutation of the FgCDC25 gene resulted in decreased toxisome formation and deoxynivalenol (DON) production, which was largely depended on cAMP signalling. In addition, FgCdc25 indirectly interacted with FgSte11 in FgSte11-Ste7-Gpmk1 cascade, and the ΔFgcdc25 strain totally abolished the formation of infection structures and was nonpathogenic in planta, which was partially recovered by addition of exogenous cAMP. In contrast, FgCdc25 directly interplayed with FgBck1 in FgBck1-MKK1-Mgv1 cascade to negatively control cell wall integrity. Collectively, these results suggest that FgCdc25 modulates cAMP and MAPK signalling pathways and further regulates fungal development, DON production and plant infection in F. graminearum.
科研通智能强力驱动
Strongly Powered by AbleSci AI