超级电容器
材料科学
高分辨率透射电子显微镜
X射线光电子能谱
金属有机骨架
化学工程
傅里叶变换红外光谱
过渡金属
碳化
电化学
纳米技术
扫描电子显微镜
透射电子显微镜
电极
化学
吸附
复合材料
物理化学
有机化学
工程类
催化作用
作者
Aya M. Mohamed,Ahmed O. Abo El Naga,T. Zaki,H.B. Hassan,Nageh K. Allam
标识
DOI:10.1021/acsaem.0c01513
摘要
Transition-metal dichalcogenides are gaining much interest in the energy storage sector due to the two-dimensional (2D) nature and conductivity of the materials. However, single transition-metal dichalcogenides are not stable, preventing their practical use in real devices. Herein, we demonstrate the synthesis of binary metal dichalcogenides (Co–W–S) via carbonization of zeolitic imidazolate framework (ZIF-67), a subclass of metal–organic frameworks, encapsulated with phosphotungstic acid (PTA@ZIF-67). The morphology and surface functional groups of the as-synthesized Co–W–S composite are characterized via field-emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM), and Fourier transform infrared (FTIR) spectroscopy. Furthermore, the crystal structure and elemental composition of the fabricated Co–W–S composite are elucidated by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analyses. Upon testing its electrochemical performance as a supercapacitor electrode, the fabricated Co–W–S@N,S-codoped porous carbon (N,S-PC) shows exceptional specific capacitance (1929 F g–1 at 5 mV s–1). Furthermore, the constructed asymmetric supercapacitor device using Co–W–S@N,S-PC and activated carbon as positive and negative poles, respectively, displays superior energy density and power density of 32.9 Wh kg–1 and 700.2 W kg–1, respectively, with high Columbic efficiency over 10 000 charge/discharge cycles at 10 A g–1.
科研通智能强力驱动
Strongly Powered by AbleSci AI