已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

MRI-based radiomics signature for localized prostate cancer: a new clinical tool for cancer aggressiveness prediction? Sub-study of prospective phase II trial on ultra-hypofractionated radiotherapy (AIRC IG-13218)

医学 无线电技术 前列腺癌 神经组阅片室 接收机工作特性 磁共振成像 阶段(地层学) 放射科 内科学 放射治疗 前列腺 癌症 核医学 古生物学 精神科 生物 神经学
作者
Simone Giovanni Gugliandolo,Matteo Pepa,Lars Johannes Isaksson,Giulia Marvaso,Sara Raimondi,Francesca Botta,Sara Gandini,D. Ciardo,Stefania Volpe,Giulia Riva,D.P. Rojas,Dario Zerini,Paola Pricolo,S. Alessi,Giuseppe Petralia,Paul Summers,Francesco A. Mistretta,Stefano Luzzago,Federica Cattani,Ottavio De Cobelli,Enrico Cassano,Marta Cremonesi,Massimo Bellomi,Roberto Orecchia,Barbara Alicja Jereczek‐Fossa
出处
期刊:European Radiology [Springer Science+Business Media]
卷期号:31 (2): 716-728 被引量:30
标识
DOI:10.1007/s00330-020-07105-z
摘要

Radiomic involves testing the associations of a large number of quantitative imaging features with clinical characteristics. Our aim was to extract a radiomic signature from axial T2-weighted (T2-W) magnetic resonance imaging (MRI) of the whole prostate able to predict oncological and radiological scores in prostate cancer (PCa). This study included 65 patients with localized PCa treated with radiotherapy (RT) between 2014 and 2018. For each patient, the T2-W MRI images were normalized with the histogram intensity scale standardization method. Features were extracted with the IBEX software. The association of each radiomic feature with risk class, T-stage, Gleason score (GS), extracapsular extension (ECE) score, and Prostate Imaging Reporting and Data System (PI-RADS v2) score was assessed by univariate and multivariate analysis. Forty-nine out of 65 patients were eligible. Among the 1702 features extracted, 3 to 6 features with the highest predictive power were selected for each outcome. This analysis showed that texture features were the most predictive for GS, PI-RADS v2 score, and risk class; intensity features were highly associated with T-stage, ECE score, and risk class, with areas under the receiver operating characteristic curve (ROC AUC) ranging from 0.74 to 0.94. MRI-based radiomics is a promising tool for prediction of PCa characteristics. Although a significant association was found between the selected features and all the mentioned clinical/radiological scores, further validations on larger cohorts are needed before these findings can be applied in the clinical practice. • A radiomic model was used to classify PCa aggressiveness. • Radiomic analysis was performed on T2-W magnetic resonance images of the whole prostate gland. • The most predictive features belong to the texture (57%) and intensity (43%) domains.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Bin_Liu发布了新的文献求助10
刚刚
Cheng完成签到 ,获得积分0
1秒前
高屋建瓴完成签到,获得积分10
1秒前
strelias完成签到,获得积分10
2秒前
山复尔尔完成签到 ,获得积分10
2秒前
蓝华完成签到 ,获得积分10
2秒前
牢孙发布了新的文献求助30
2秒前
单薄的夜阑完成签到,获得积分10
2秒前
江流有声完成签到 ,获得积分10
3秒前
几两完成签到 ,获得积分10
6秒前
cc完成签到 ,获得积分10
7秒前
成就的靖琪完成签到,获得积分10
8秒前
10秒前
是多多呀完成签到 ,获得积分10
11秒前
万能图书馆应助橘子脉动采纳,获得10
11秒前
健忘草莓发布了新的文献求助10
13秒前
znlion完成签到,获得积分10
14秒前
陈砍砍完成签到 ,获得积分10
15秒前
张先生2365完成签到,获得积分10
15秒前
dinglingling发布了新的文献求助30
15秒前
yyy完成签到 ,获得积分10
16秒前
16秒前
龙叶静完成签到 ,获得积分10
17秒前
蝴蝶完成签到 ,获得积分10
17秒前
孤标傲世完成签到 ,获得积分10
17秒前
wenlong完成签到 ,获得积分10
19秒前
科研狗完成签到 ,获得积分0
19秒前
Chris完成签到 ,获得积分0
22秒前
czj完成签到 ,获得积分10
23秒前
敞敞亮亮完成签到 ,获得积分10
23秒前
在水一方完成签到 ,获得积分10
24秒前
星野Nana_发布了新的文献求助10
26秒前
Haki完成签到,获得积分10
28秒前
小HO完成签到 ,获得积分10
29秒前
斯文败类应助小C同学采纳,获得10
29秒前
30秒前
烟雨梦兮发布了新的文献求助10
31秒前
老实的抽屉完成签到 ,获得积分10
33秒前
eli完成签到,获得积分10
35秒前
Ghiocel完成签到,获得积分10
37秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 680
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
PBSM: Predictive Bi-Preference Stable Matching in Spatial Crowdsourcing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4123881
求助须知:如何正确求助?哪些是违规求助? 3661751
关于积分的说明 11589829
捐赠科研通 3362373
什么是DOI,文献DOI怎么找? 1847535
邀请新用户注册赠送积分活动 911983
科研通“疑难数据库(出版商)”最低求助积分说明 827809