MDS research criteria for prodromal Parkinson's disease

前驱期 医学 疾病 帕金森病 帕金森病 心理学 痴呆 病理
作者
Daniela Berg,Ronald B. Postuma,Charles H. Adler,Bastiaan R. Bloem,Piu Chan,Bruno Dubois,Thomas Gasser,Christopher G. Goetz,Glenda M. Halliday,Lawrence Joseph,Anthony E. Lang,Inga Liepelt‐Scarfone,Irene Litvan,Kenneth Marek,José Á. Obeso,Wolfgang H. Oertel,C. Warren Olanow,Werner Poewe,Matthew Stern,Günther Deuschl
出处
期刊:Movement Disorders [Wiley]
卷期号:30 (12): 1600-1611 被引量:1132
标识
DOI:10.1002/mds.26431
摘要

This article describes research criteria and probability methodology for the diagnosis of prodromal PD. Prodromal disease refers to the stage wherein early symptoms or signs of PD neurodegeneration are present, but classic clinical diagnosis based on fully evolved motor parkinsonism is not yet possible. Given the lack of clear neuroprotective/disease-modifying therapy for prodromal PD, these criteria were developed for research purposes only. The criteria are based upon the likelihood of prodromal disease being present with probable prodromal PD defined as ≥80% certainty. Certainty estimates rely upon calculation of an individual's risk of having prodromal PD, using a Bayesian naïve classifier. In this methodology, a previous probability of prodromal disease is delineated based upon age. Then, the probability of prodromal PD is calculated by adding diagnostic information, expressed as likelihood ratios. This diagnostic information combines estimates of background risk (from environmental risk factors and genetic findings) and results of diagnostic marker testing. In order to be included, diagnostic markers had to have prospective evidence documenting ability to predict clinical PD. They include motor and nonmotor clinical symptoms, clinical signs, and ancillary diagnostic tests. These criteria represent a first step in the formal delineation of early stages of PD and will require constant updating as more information becomes available. © 2015 International Parkinson and Movement Disorder Society
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Singularity发布了新的文献求助10
1秒前
汪江涛完成签到,获得积分10
1秒前
夏硕士发布了新的文献求助20
1秒前
Shirley完成签到,获得积分10
2秒前
呆鹅喵喵完成签到,获得积分10
2秒前
hhcosy发布了新的文献求助10
2秒前
沙克几十块完成签到,获得积分10
3秒前
lyy完成签到 ,获得积分10
3秒前
3秒前
科研通AI5应助SunJc采纳,获得10
3秒前
意识难防滑完成签到,获得积分10
3秒前
半夏发布了新的文献求助10
4秒前
多吃青菜完成签到,获得积分10
4秒前
Senna完成签到,获得积分10
5秒前
hs完成签到,获得积分10
5秒前
优雅的怀莲完成签到,获得积分10
5秒前
5秒前
李尧轩发布了新的文献求助10
6秒前
完美梨愁完成签到 ,获得积分10
6秒前
6秒前
牛拉犁完成签到 ,获得积分10
6秒前
奋斗的元珊完成签到,获得积分10
6秒前
玥来玥好完成签到,获得积分10
8秒前
1111111111111发布了新的文献求助10
8秒前
龙虾发票完成签到,获得积分10
8秒前
changl2023完成签到,获得积分10
9秒前
ThomasZ完成签到,获得积分10
9秒前
dique3hao完成签到 ,获得积分10
9秒前
9秒前
缥缈的飞扬完成签到,获得积分10
9秒前
小鹿发布了新的文献求助10
10秒前
早日毕业完成签到,获得积分10
10秒前
时尚的傲旋完成签到 ,获得积分10
11秒前
曼曼来完成签到,获得积分10
11秒前
孤岛完成签到,获得积分10
11秒前
longtengfei完成签到,获得积分10
11秒前
77最可爱完成签到,获得积分10
12秒前
小小应助xiao142采纳,获得10
12秒前
LM完成签到,获得积分10
12秒前
高分求助中
Handbook of Diagnosis and Treatment of DSM-5-TR Personality Disorders 800
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
建筑材料检测与应用 370
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3830672
求助须知:如何正确求助?哪些是违规求助? 3372994
关于积分的说明 10476648
捐赠科研通 3093056
什么是DOI,文献DOI怎么找? 1702310
邀请新用户注册赠送积分活动 818920
科研通“疑难数据库(出版商)”最低求助积分说明 771153