A Self-Supervised Deep Learning Approach for Blind Denoising and Waveform Coherence Enhancement in Distributed Acoustic Sensing Data

计算机科学 噪音(视频) 降噪 基本事实 分布式声传感 环境噪声级 采样(信号处理) 人工智能 声学 光纤 光纤传感器 探测器 电信 物理 图像(数学) 声音(地理)
作者
Martijn van den Ende,Itzhak Lior,Jean‐Paul Ampuero,Anthony Sladen,André Ferrari,Cédric Richard
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:34 (7): 3371-3384 被引量:56
标识
DOI:10.1109/tnnls.2021.3132832
摘要

Fiber-optic distributed acoustic sensing (DAS) is an emerging technology for vibration measurements with numerous applications in seismic signal analysis, including microseismicity detection, ambient noise tomography, earthquake source characterization, and active source seismology. Using laser-pulse techniques, DAS turns (commercial) fiber-optic cables into seismic arrays with a spatial sampling density of the order of meters and a time sampling rate up to one thousand Hertz. The versatility of DAS enables dense instrumentation of traditionally inaccessible domains, such as urban, glaciated, and submarine environments. This in turn opens up novel applications such as traffic density monitoring and maritime vessel tracking. However, these new environments also introduce new challenges in handling various types of recorded noise, impeding the application of traditional data analysis workflows. In order to tackle the challenges posed by noise, new denoising techniques need to be explored that are tailored to DAS. In this work, we propose a Deep Learning approach that leverages the spatial density of DAS measurements to remove spatially incoherent noise with unknown characteristics. This approach is entirely self-supervised, so no noise-free ground truth is required, and it makes no assumptions regarding the noise characteristics other than that it is spatio-temporally incoherent. We apply our approach to both synthetic and real-world DAS data to demonstrate its excellent performance, even when the signals of interest are well below the noise level. Our proposed methods can be readily incorporated into conventional data processing workflows to facilitate subsequent seismological analyses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
唐古拉发布了新的文献求助10
刚刚
ada关闭了ada文献求助
刚刚
刚刚
青松子发布了新的文献求助10
刚刚
禾禾发布了新的文献求助10
1秒前
Jasper应助INGRID采纳,获得10
2秒前
2秒前
安寒发布了新的文献求助10
2秒前
3秒前
DHL完成签到,获得积分10
4秒前
JohnsonTse发布了新的文献求助10
4秒前
4秒前
王博发布了新的文献求助10
4秒前
5秒前
6秒前
7秒前
wzy完成签到,获得积分10
8秒前
DHL发布了新的文献求助10
8秒前
9秒前
Owen应助刻苦的三德采纳,获得10
10秒前
青松子完成签到,获得积分10
11秒前
comput_math完成签到,获得积分10
12秒前
12秒前
风趣的凌珍完成签到,获得积分20
12秒前
李耀华发布了新的文献求助10
14秒前
刘华完成签到,获得积分20
14秒前
浮游应助天真惜天采纳,获得10
16秒前
量子星尘发布了新的文献求助10
16秒前
浩铭发布了新的文献求助10
17秒前
17秒前
呵呵呵完成签到,获得积分10
17秒前
18秒前
李健应助科研欢采纳,获得10
18秒前
18秒前
18秒前
19秒前
wanci应助Wwww采纳,获得10
19秒前
怕黑鲂发布了新的文献求助10
20秒前
yu完成签到,获得积分10
21秒前
义气晓凡发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Antihistamine substances. XXII; Synthetic antispasmodics. IV. Basic ethers derived from aliphatic carbinols and α-substituted benzyl alcohols 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5430497
求助须知:如何正确求助?哪些是违规求助? 4543659
关于积分的说明 14188414
捐赠科研通 4461921
什么是DOI,文献DOI怎么找? 2446355
邀请新用户注册赠送积分活动 1437748
关于科研通互助平台的介绍 1414473