Machine learning in scanning transmission electron microscopy

扫描透射电子显微镜 纳米技术 计算机科学 材料科学 人工智能 物理 透射电子显微镜
作者
Sergei V. Kalinin,Colin Ophus,Paul M. Voyles,Rolf Erni,Demie Kepaptsoglou,Vincenzo Grillo,Andrew R. Lupini,Mark P. Oxley,Eric Schwenker,Maria K. Y. Chan,Joanne Etheridge,Xiang Li,Grace G. D. Han,Maxim Ziatdinov,Naoya Shibata,Stephen J. Pennycook
出处
期刊:Nature Reviews Methods Primers [Springer Nature]
卷期号:2 (1) 被引量:85
标识
DOI:10.1038/s43586-022-00095-w
摘要

Scanning transmission electron microscopy (STEM) has emerged as a uniquely powerful tool for structural and functional imaging of materials on the atomic level. Driven by advances in aberration correction, STEM now allows the routine imaging of structures with single-digit picometre-level precision for localization of atomic units. This Primer focuses on the opportunities emerging at the interface between STEM and machine learning (ML) methods. We review the primary STEM imaging methods, including structural imaging, electron energy loss spectroscopy and its momentum-resolved modalities and 4D-STEM. We discuss the quantification of STEM structural data as a necessary step towards meaningful ML applications and its analysis in terms of the relevant physics and chemistry. We show examples of the opportunities offered by structural STEM imaging in elucidating the chemistry and physics of complex materials and how the latter connect to first-principles and phase-field models to yield consistent interpretation of generative physics. We present the critical infrastructural needs for the broad adoption of ML methods in the STEM community, including the storage of data and metadata to allow the reproduction of experiments. Finally, we discuss the application of ML to automating experiments and novel scanning modes. Scanning transmission electron microscopy (STEM) is a powerful tool for structural and functional imaging of materials. In this Primer, Kalinin et al. focus on the integration of machine learning and STEM to improve user experience and enhance current opportunities in STEM imaging.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
2秒前
简单以宁2发布了新的文献求助10
5秒前
llllllb发布了新的文献求助10
7秒前
大个应助wanhe采纳,获得10
9秒前
如意发布了新的文献求助10
9秒前
10秒前
U2应助鲸鱼阿扑采纳,获得20
12秒前
尼古拉耶维奇完成签到,获得积分10
14秒前
简单以宁2完成签到,获得积分10
14秒前
喜静完成签到 ,获得积分10
16秒前
充电宝应助Q蒂采纳,获得10
16秒前
英姑应助一北采纳,获得10
17秒前
GD完成签到,获得积分10
18秒前
20秒前
23秒前
24秒前
blue2021发布了新的文献求助10
25秒前
26秒前
一北发布了新的文献求助10
28秒前
zhouzhou发布了新的文献求助200
33秒前
斯文道之发布了新的文献求助10
33秒前
辣辣完成签到,获得积分10
37秒前
38秒前
旺旺碎完成签到 ,获得积分10
41秒前
41秒前
Hou完成签到 ,获得积分10
45秒前
JamesPei应助精明的灵珊采纳,获得30
46秒前
48秒前
chaotianjiao完成签到 ,获得积分10
48秒前
卓天宇完成签到,获得积分10
50秒前
张老师完成签到,获得积分10
51秒前
52秒前
给好评发布了新的文献求助10
52秒前
55秒前
58秒前
充电宝应助namelorna采纳,获得10
1分钟前
JamesPei应助落后醉易采纳,获得10
1分钟前
正直觅云发布了新的文献求助10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779843
求助须知:如何正确求助?哪些是违规求助? 3325264
关于积分的说明 10222351
捐赠科研通 3040435
什么是DOI,文献DOI怎么找? 1668835
邀请新用户注册赠送积分活动 798788
科研通“疑难数据库(出版商)”最低求助积分说明 758563