生物炭
修正案
化学
磷
磷
氮气
酶
微生物种群生物学
营养物
土壤水分
环境化学
农学
生物化学
生物
细菌
生态学
有机化学
法学
遗传学
热解
政治学
作者
Zhe Chen,Penghui Jin,Hui Wang,Tianlong Hu,Xingwu Lin,Zubin Xie
标识
DOI:10.1016/j.scitotenv.2022.156532
摘要
Soil extracellular enzyme activities of microbes to acquire carbon (C), nitrogen (N) and phosphorus (P) exert great roles on soil C sequestration and N, P availability. However, a lack of biochar-induced changes of C, N and P acquisition enzyme activities hinders us from understanding if biochar application will lead to microbial C, N and P limitation based on ecoenzymatic stoichiometry. In this study, through ecoenzymatic stoichiometry, a meta-analysis was conducted to evaluate responses of microbial metabolic limitation to biochar amendment by collecting data of ecoenzymatic activities (EEAs) of the C, N and P acquisition from peer-reviewed papers. The results showed that biochar application increased activities of C, N acquisition enzymes significantly by 9.3 % and 15.1 % on average, respectively. But the influence on P acquisition enzymes activities (Acid, neutral or alkaline phosphatase, abbreviated wholly as PHOS) was not significant. Biochar increased ratio of C acquisition enzymes activities (EC) over P enzymes activities (EP) and ratio of N enzymes activities (EN) over EP, but decreased EC:EN, indicating an increased N limitation or a shift from P limitation to N limitation in microbial metabolism. Enzyme vector analysis showed that soil microbial metabolism was limited by C relative to nutrients (N and P) under biochar amendment according to the overall increased vector length (~1.5 %). Wood biochar caused the strongest microbial C limitation, followed by crop residue biochar as indicated by increased enzyme vector length of 3.6 % and 1.2 % on average, respectively. The stronger microbial C limitation was also found when initial soil total organic carbon (SOC) was <20 g·kg-1. Our results illustrated that available nitrogen and organic carbon should be provided to meet microbial stoichiometric requirements to improve plant productivity, especially in low fertile soils under biochar amendment.
科研通智能强力驱动
Strongly Powered by AbleSci AI