亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Using supervised machine learning for large‐scale classification in management research: The case for identifying artificial intelligence patents

计算机科学 人工智能 杠杆(统计) 构造(python库) 机器学习 非结构化数据 过程(计算) 自然语言处理 数据科学 情报检索 数据挖掘 大数据 操作系统 程序设计语言
作者
Milan Miric,Nan Jia,Kenneth Guang-Lih Huang
出处
期刊:Strategic Management Journal [Wiley]
卷期号:44 (2): 491-519 被引量:148
标识
DOI:10.1002/smj.3441
摘要

A bstract Research Summary Researchers increasingly use unstructured text data to construct quantitative variables for analysis. This goal has traditionally been achieved using keyword‐based approaches, which require researchers to specify a dictionary of keywords mapped to the theoretical concepts of interest. However, recent machine learning (ML) tools for text classification and natural language processing can be used to construct quantitative variables and to classify unstructured text documents. In this paper, we demonstrate how to employ ML tools for this purpose and discuss one application for identifying artificial intelligence (AI) technologies in patents. We compare and contrast various ML methods with the keyword‐based approach, demonstrating the advantages of the ML approach. We also leverage the classification outcomes generated by ML models to demonstrate general patterns of AI technological innovation development. Managerial Summary Text‐based documents offer a wealth of information for researchers and business analysts. However, researchers often need to find a way to classify these documents to use in subsequent research projects. In this paper, we demonstrate how supervised ML methods can be used to automate the process of classifying textual documents into pre‐defined categories or groups. We provide an overview of when such techniques may be used in comparison to other methods, and the considerations and tradeoffs associated with each method. We apply these methods to identify AI‐based technologies from all patents in the United States, based on patent abstract text. This allows us to show interesting patterns of AI innovation development in the United States. We also provide the code and data used in this paper for future research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
3秒前
6秒前
AdamJie发布了新的文献求助10
11秒前
Andy完成签到 ,获得积分10
13秒前
爆米花应助科研通管家采纳,获得10
21秒前
21秒前
29秒前
43秒前
51秒前
1分钟前
zbzfp发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
香蕉觅云应助zbzfp采纳,获得10
1分钟前
王加冕完成签到 ,获得积分10
1分钟前
时尚丹寒完成签到 ,获得积分10
1分钟前
烂漫的芫完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
Jasper应助科研通管家采纳,获得10
2分钟前
2分钟前
迷途小书童完成签到,获得积分10
2分钟前
2分钟前
科目三应助Jello采纳,获得10
2分钟前
131949发布了新的文献求助10
2分钟前
脑洞疼应助131949采纳,获得10
2分钟前
lele完成签到 ,获得积分10
2分钟前
2分钟前
huayu发布了新的文献求助10
2分钟前
2分钟前
知性的剑身完成签到,获得积分10
3分钟前
3分钟前
3分钟前
学生信的大叔完成签到,获得积分10
3分钟前
云轰2857发布了新的文献求助10
3分钟前
进步面包笑哈哈应助huayu采纳,获得30
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5509482
求助须知:如何正确求助?哪些是违规求助? 4604372
关于积分的说明 14489686
捐赠科研通 4539145
什么是DOI,文献DOI怎么找? 2487317
邀请新用户注册赠送积分活动 1469770
关于科研通互助平台的介绍 1442014