Symmetry-Driven hyper feature GCN for skeleton-based gait recognition

计算机科学 人工智能 判别式 步态 模式识别(心理学) 卷积神经网络 稳健性(进化) 图形 特征(语言学) 理论计算机科学 基因 生物 哲学 生物化学 生理学 化学 语言学
作者
Xiaokai Liu,Zhaoyang You,Yuxiang He,Sheng Bi,Jie Wang
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:125: 108520-108520 被引量:33
标识
DOI:10.1016/j.patcog.2022.108520
摘要

• SDHF-GCN is the first work that models the skeleton-based graph structure with graph-based neural network in gait recognition task. • The symmetry perceptual principle enforces the dependencies between related joints and suppress the noises caused by joint estimation. • Hierarchical features can improve the expressive and discriminative power of the gait features. • SDHF-GCN renders substantial improvements over mainstream methods, especially in the coat-wearing scenario. • Silhouette-based and skeleton-based action patterns are certified to be highly complementary. Gait recognition, as an attractive task in biometrics, remains challenging due to significant intra-class changes of clothing and pose variations across different cameras. Recent approaches mainly focus on silhouette-based gait mode, which is easy to model in Convolutional Neural Networks (CNNs). Compared with silhouettes, the dynamics of skeletons essentially convey more robust information, which is invariant to view and clothing changes. Conventional approaches for modeling skeletons usually rely on hand-crafted features or traversal rules, thus resulting in limited expressive power and difficulties of generalization. In this work, we address the skeleton-based gait recognition task with a novel Symmetry-Driven Hyper Feature Graph Convolutional Network (SDHF-GCN), which goes beyond the limitations of previous approaches by automatically learning multiple dynamic patterns and hierarchical semantic features in a unified Graph Convolutional Network (GCN). This model involves three dynamic patterns: natural connection, temporal correlation and symmetric interaction, which enriches the description of dynamic patterns by exploiting symmetry perceptual principles. Furthermore, a hyper feature network is proposed to aggregate the hierarchical semantic features, including dynamic features at the high level, structured features at the intermediate level, and static features at the low level, which complement each other to enhance the discriminative ability. By integrating different patterns in the hierarchical structure, the model is able to generate versatile and discriminative representations, thus improving the recognition rate. On the CASIA-B and OUMVLP-Pose datasets, the proposed SDHF-GCN renders substantial improvements over mainstream methods, especially in the coat-wearing scenario, with superior robustness to covariate factors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李广辉发布了新的文献求助10
3秒前
风中的元灵完成签到,获得积分10
3秒前
wss123456发布了新的文献求助10
4秒前
wss123456完成签到,获得积分20
12秒前
20秒前
23秒前
在水一方应助科研通管家采纳,获得10
23秒前
pluto应助科研通管家采纳,获得50
23秒前
23秒前
FashionBoy应助科研通管家采纳,获得10
23秒前
科目三应助科研通管家采纳,获得10
24秒前
汉堡包应助科研通管家采纳,获得10
24秒前
Steven发布了新的文献求助10
25秒前
28秒前
28秒前
乐乐应助阔达衬衫采纳,获得10
30秒前
32秒前
小高同学发布了新的文献求助10
32秒前
昏睡的蟠桃给TrinhTran2001的求助进行了留言
32秒前
科研小民工应助黄小北采纳,获得200
33秒前
CodeCraft应助dff采纳,获得10
36秒前
温暖书文应助nemo采纳,获得10
39秒前
踏实采波完成签到,获得积分10
39秒前
锦秋发布了新的文献求助30
39秒前
dff完成签到,获得积分10
42秒前
谷安完成签到,获得积分10
44秒前
Friday发布了新的文献求助10
44秒前
Owen应助Li采纳,获得10
45秒前
46秒前
hanliulaixi发布了新的文献求助10
46秒前
bkagyin应助小高同学采纳,获得10
50秒前
无奈鞯完成签到,获得积分20
51秒前
bkagyin应助清茶韵心采纳,获得10
52秒前
Friday完成签到,获得积分20
52秒前
pluto应助科研小破白菜采纳,获得20
56秒前
北方完成签到,获得积分10
56秒前
56秒前
57秒前
轻松凝梦发布了新的文献求助10
59秒前
默默雨竹发布了新的文献求助10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778573
求助须知:如何正确求助?哪些是违规求助? 3324177
关于积分的说明 10217311
捐赠科研通 3039383
什么是DOI,文献DOI怎么找? 1668032
邀请新用户注册赠送积分活动 798482
科研通“疑难数据库(出版商)”最低求助积分说明 758385