Generative Adversarial Network-Driven Detection of Adversarial Tasks in Mobile Crowdsensing

计算机科学 对抗制 鉴别器 对抗性机器学习 分类器(UML) 人工智能 机器学习 杠杆(统计) 二进制数 二元分类 生成语法 探测器 支持向量机 数学 电信 算术
作者
Zhiyan Chen,Burak Kantarcı
标识
DOI:10.1109/icc45855.2022.9839003
摘要

Mobile Crowdsensing systems are vulnerable to various attacks as they build on non-dedicated and ubiquitous properties. Machine learning (ML)-based approaches are widely investigated to build attack detection systems and ensure MCS systems security. However, adversaries that aim to clog the sensing front-end and MCS back-end leverage intelligent techniques, which are challenging for MCS platform and service providers to develop appropriate detection frameworks against these attacks. Generative Adversarial Networks (GANs) have been applied to generate synthetic samples, that are extremely similar to the real ones, deceiving classifiers such that the synthetic samples are indistinguishable from the originals. Previous works suggest that GAN-based attacks exhibit more crucial devastation than empirically designed attack samples, and result in low detection rate at the MCS platform. With this in mind, this paper aims to detect intelligently designed illegitimate sensing service requests by integrating a GAN-based model. To this end, we propose a two-level cascading classifier that combines the GAN discriminator with a binary classifier to prevent adversarial fake tasks. Through simulations, we compare our results to a single-level binary classifier, and the numeric results show that proposed approach raises Adversarial Attack Detection Rate (AADR), from 0% to 97.5% by KNN/NB, from 45.9% to 100% by Decision Tree. Meanwhile, with two-levels classifiers, Original Attack Detection Rate (OADR) improves for the three binary classifiers, with comparison, such as NB from 26.1% to 61.5%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
裘青易发布了新的文献求助10
1秒前
1秒前
Earven发布了新的文献求助10
2秒前
酷波er应助李怀璟采纳,获得10
3秒前
mardan完成签到,获得积分10
3秒前
Caleb完成签到,获得积分10
4秒前
yaojia发布了新的文献求助10
5秒前
5秒前
可爱的函函应助明亮幻枫采纳,获得30
5秒前
6秒前
YY发布了新的文献求助10
8秒前
裘青易完成签到,获得积分10
8秒前
慕青应助bao采纳,获得10
8秒前
如意宛应助倔驴采纳,获得10
8秒前
张董事长发布了新的文献求助10
8秒前
9秒前
10秒前
Earven完成签到,获得积分10
11秒前
水合钴离子关注了科研通微信公众号
11秒前
明亮安双发布了新的文献求助10
11秒前
12秒前
12秒前
12秒前
孔孔孔完成签到,获得积分20
13秒前
iNk应助任性萝采纳,获得20
13秒前
13秒前
14秒前
无谓完成签到,获得积分10
15秒前
量子星尘发布了新的文献求助10
16秒前
17秒前
爆米花应助咻咻采纳,获得10
17秒前
18秒前
18秒前
白礼嘉发布了新的文献求助10
18秒前
金平一小完成签到,获得积分10
19秒前
19秒前
霍师傅发布了新的文献求助10
20秒前
21秒前
hugeng发布了新的文献求助10
23秒前
hehsk发布了新的文献求助10
24秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III – Liver, Biliary Tract, and Pancreas, 3rd Edition 666
Social Epistemology: The Niches for Knowledge and Ignorance 500
优秀运动员运动寿命的人文社会学因素研究 500
Medicine and the Navy, 1200-1900: 1815-1900 420
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4247650
求助须知:如何正确求助?哪些是违规求助? 3780662
关于积分的说明 11870181
捐赠科研通 3433874
什么是DOI,文献DOI怎么找? 1884693
邀请新用户注册赠送积分活动 936272
科研通“疑难数据库(出版商)”最低求助积分说明 842161