Adversarial Learning Based Node-Edge Graph Attention Networks for Autism Spectrum Disorder Identification

概化理论 计算机科学 人工智能 图形 杠杆(统计) 自闭症 自闭症谱系障碍 模式识别(心理学) 机器学习 理论计算机科学 心理学 发展心理学
作者
Yuzhong Chen,Jiadong Yan,Mingxin Jiang,Tuo Zhang,Zhongbo Zhao,Weihua Zhao,Jian Zheng,Dezhong Yao,Rong Zhang,Keith M. Kendrick,Xi Jiang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (6): 7275-7286 被引量:59
标识
DOI:10.1109/tnnls.2022.3154755
摘要

Graph neural networks (GNNs) have received increasing interest in the medical imaging field given their powerful graph embedding ability to characterize the non-Euclidean structure of brain networks based on magnetic resonance imaging (MRI) data. However, previous studies are largely node-centralized and ignore edge features for graph classification tasks, resulting in moderate performance of graph classification accuracy. Moreover, the generalizability of GNN model is still far from satisfactory in brain disorder [e.g., autism spectrum disorder (ASD)] identification due to considerable individual differences in symptoms among patients as well as data heterogeneity among different sites. In order to address the above limitations, this study proposes a novel adversarial learning-based node-edge graph attention network (AL-NEGAT) for ASD identification based on multimodal MRI data. First, both node and edge features are modeled based on structural and functional MRI data to leverage complementary brain information and preserved in the constructed weighted adjacent matrix for individuals through the attention mechanism in the proposed NEGAT. Second, two AL methods are employed to improve the generalizability of NEGAT. Finally, a gradient-based saliency map strategy is utilized for model interpretation to identify important brain regions and connections contributing to the classification. Experimental results based on the public Autism Brain Imaging Data Exchange I (ABIDE I) data demonstrate that the proposed framework achieves a classification accuracy of 74.7% between ASD and typical developing (TD) groups based on 1007 subjects across 17 different sites and outperforms the state-of-the-art methods, indicating satisfying classification ability and generalizability of the proposed AL-NEGAT model. Our work provides a powerful tool for brain disorder identification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
浮光珏完成签到,获得积分10
刚刚
哈山阿里发布了新的文献求助10
1秒前
1秒前
老登来壶猹完成签到,获得积分10
2秒前
2秒前
薛飞发布了新的文献求助10
2秒前
Frank发布了新的文献求助10
2秒前
yangmanjuan关注了科研通微信公众号
3秒前
minicat51完成签到,获得积分20
3秒前
WNing发布了新的文献求助10
3秒前
今后应助辛儿的毅采纳,获得10
3秒前
传统的纸飞机完成签到 ,获得积分10
3秒前
冬青完成签到 ,获得积分10
3秒前
听闻发布了新的文献求助10
4秒前
4秒前
Bedivere发布了新的文献求助10
5秒前
令狐剑通完成签到,获得积分10
5秒前
刘小雨完成签到,获得积分20
5秒前
Lucas应助Distance采纳,获得10
5秒前
cs关闭了cs文献求助
6秒前
Trost发布了新的文献求助10
6秒前
7秒前
务实天德完成签到,获得积分10
7秒前
7秒前
coolkid应助XWT采纳,获得10
8秒前
Frank完成签到,获得积分10
9秒前
9秒前
10秒前
丽优发布了新的文献求助10
11秒前
11秒前
12秒前
yao发布了新的文献求助10
13秒前
善学以致用应助WNing采纳,获得10
13秒前
14秒前
14秒前
14秒前
14秒前
15秒前
sabrina发布了新的文献求助10
16秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3947574
求助须知:如何正确求助?哪些是违规求助? 3492870
关于积分的说明 11066848
捐赠科研通 3223597
什么是DOI,文献DOI怎么找? 1781746
邀请新用户注册赠送积分活动 866431
科研通“疑难数据库(出版商)”最低求助积分说明 800332