Adversarial Learning Based Node-Edge Graph Attention Networks for Autism Spectrum Disorder Identification

概化理论 计算机科学 人工智能 图形 杠杆(统计) 自闭症 自闭症谱系障碍 模式识别(心理学) 机器学习 理论计算机科学 心理学 发展心理学
作者
Yuzhong Chen,Jiadong Yan,Mingxin Jiang,Tuo Zhang,Zhongbo Zhao,Weihua Zhao,Jian Zheng,Dezhong Yao,Rong Zhang,Keith M. Kendrick,Xi Jiang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (6): 7275-7286 被引量:56
标识
DOI:10.1109/tnnls.2022.3154755
摘要

Graph neural networks (GNNs) have received increasing interest in the medical imaging field given their powerful graph embedding ability to characterize the non-Euclidean structure of brain networks based on magnetic resonance imaging (MRI) data. However, previous studies are largely node-centralized and ignore edge features for graph classification tasks, resulting in moderate performance of graph classification accuracy. Moreover, the generalizability of GNN model is still far from satisfactory in brain disorder [e.g., autism spectrum disorder (ASD)] identification due to considerable individual differences in symptoms among patients as well as data heterogeneity among different sites. In order to address the above limitations, this study proposes a novel adversarial learning-based node-edge graph attention network (AL-NEGAT) for ASD identification based on multimodal MRI data. First, both node and edge features are modeled based on structural and functional MRI data to leverage complementary brain information and preserved in the constructed weighted adjacent matrix for individuals through the attention mechanism in the proposed NEGAT. Second, two AL methods are employed to improve the generalizability of NEGAT. Finally, a gradient-based saliency map strategy is utilized for model interpretation to identify important brain regions and connections contributing to the classification. Experimental results based on the public Autism Brain Imaging Data Exchange I (ABIDE I) data demonstrate that the proposed framework achieves a classification accuracy of 74.7% between ASD and typical developing (TD) groups based on 1007 subjects across 17 different sites and outperforms the state-of-the-art methods, indicating satisfying classification ability and generalizability of the proposed AL-NEGAT model. Our work provides a powerful tool for brain disorder identification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wuhao0118完成签到,获得积分10
1秒前
萨摩耶发布了新的文献求助10
4秒前
HEIKU应助wuhao0118采纳,获得10
4秒前
地学韦丰吉司长完成签到,获得积分10
5秒前
xo发布了新的文献求助10
5秒前
TTYYI关注了科研通微信公众号
6秒前
8秒前
12秒前
QIN发布了新的文献求助10
15秒前
幻心完成签到,获得积分10
22秒前
22秒前
Sewerant完成签到 ,获得积分10
27秒前
33秒前
37秒前
37秒前
科研通AI5应助科研通管家采纳,获得10
37秒前
小蘑菇应助科研通管家采纳,获得30
37秒前
Ava应助科研通管家采纳,获得10
38秒前
在水一方应助科研通管家采纳,获得10
38秒前
深情安青应助科研通管家采纳,获得10
38秒前
英俊的铭应助科研通管家采纳,获得30
38秒前
NexusExplorer应助科研通管家采纳,获得10
38秒前
科研应助科研通管家采纳,获得10
38秒前
小马甲应助科研通管家采纳,获得10
38秒前
FashionBoy应助科研通管家采纳,获得10
38秒前
38秒前
萨摩耶完成签到 ,获得积分10
38秒前
研友_VZG7GZ应助小元采纳,获得10
39秒前
荒野求生的青椒完成签到,获得积分10
40秒前
流沙无言发布了新的文献求助10
41秒前
45秒前
闪闪灭龙发布了新的文献求助10
45秒前
45秒前
冷傲机器猫完成签到,获得积分0
46秒前
18746005898完成签到 ,获得积分10
47秒前
何YI完成签到,获得积分10
47秒前
个性的丹亦完成签到,获得积分10
48秒前
49秒前
51秒前
54秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778437
求助须知:如何正确求助?哪些是违规求助? 3324161
关于积分的说明 10217227
捐赠科研通 3039379
什么是DOI,文献DOI怎么找? 1668012
邀请新用户注册赠送积分活动 798463
科研通“疑难数据库(出版商)”最低求助积分说明 758385