Federated Learning Meets Blockchain in Edge Computing: Opportunities and Challenges

计算机科学 可扩展性 边缘设备 移动边缘计算 边缘计算 信息隐私 移动计算 数据共享 背景(考古学) 原始数据 分布式计算 计算机安全 GSM演进的增强数据速率 服务器 云计算 计算机网络 人工智能 数据库 操作系统 病理 生物 古生物学 程序设计语言 替代医学 医学
作者
Dinh C. Nguyen,Ming Ding,Quoc‐Viet Pham,Pubudu N. Pathirana,Long Bao Le,Aruna Seneviratne,Jun Li,Dusit Niyato,H. Vincent Poor
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:8 (16): 12806-12825 被引量:428
标识
DOI:10.1109/jiot.2021.3072611
摘要

Mobile-edge computing (MEC) has been envisioned as a promising paradigm to handle the massive volume of data generated from ubiquitous mobile devices for enabling intelligent services with the help of artificial intelligence (AI). Traditionally, AI techniques often require centralized data collection and training in a single entity, e.g., an MEC server, which is now becoming a weak point due to data privacy concerns and high overhead of raw data communications. In this context, federated learning (FL) has been proposed to provide collaborative data training solutions, by coordinating multiple mobile devices to train a shared AI model without directly exposing their underlying data, which enjoys considerable privacy enhancement. To improve the security and scalability of FL implementation, blockchain as a ledger technology is attractive for realizing decentralized FL training without the need for any central server. Particularly, the integration of FL and blockchain leads to a new paradigm, called FLchain, which potentially transforms intelligent MEC networks into decentralized, secure, and privacy-enhancing systems. This article presents an overview of the fundamental concepts and explores the opportunities of FLchain in MEC networks. We identify several main issues in FLchain design, including communication cost, resource allocation, incentive mechanism, security and privacy protection. The key solutions and the lessons learned along with the outlooks are also discussed. Then, we investigate the applications of FLchain in popular MEC domains, such as edge data sharing, edge content caching and edge crowdsensing. Finally, important research challenges and future directions are also highlighted.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pian完成签到,获得积分10
2秒前
怡然的山柳完成签到,获得积分10
2秒前
打打应助纯金金采纳,获得10
3秒前
3秒前
深情安青应助小综的fan儿采纳,获得10
4秒前
4秒前
迷路易形完成签到,获得积分10
4秒前
大模型应助筱煜采纳,获得10
5秒前
念头完成签到,获得积分20
5秒前
打工仔完成签到 ,获得积分10
6秒前
6秒前
笨笨芯应助茶包采纳,获得10
8秒前
陈东东完成签到,获得积分10
9秒前
Manfred完成签到,获得积分10
11秒前
Huaaaaaz发布了新的文献求助10
12秒前
小蘑菇应助FD采纳,获得10
13秒前
13秒前
经方中医周博士关注了科研通微信公众号
15秒前
15秒前
三木完成签到,获得积分10
16秒前
四十发布了新的文献求助10
16秒前
小朱完成签到 ,获得积分10
17秒前
17秒前
是否跨凤乘龙完成签到,获得积分10
17秒前
17秒前
慕青应助卢飞薇采纳,获得30
18秒前
19秒前
20秒前
20秒前
汉堡包应助优雅的听兰采纳,获得30
21秒前
tangchao完成签到,获得积分10
21秒前
lumi完成签到,获得积分20
23秒前
丘比特应助琦琦采纳,获得10
24秒前
芥楠完成签到,获得积分10
24秒前
纯金金发布了新的文献求助10
24秒前
KK发布了新的文献求助10
25秒前
25秒前
Huaaaaaz完成签到,获得积分20
26秒前
LIJINGGE发布了新的文献求助10
27秒前
lumi发布了新的文献求助30
27秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
System of systems: When services and products become indistinguishable 300
How to carry out the process of manufacturing servitization: A case study of the red collar group 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3812524
求助须知:如何正确求助?哪些是违规求助? 3357072
关于积分的说明 10385087
捐赠科研通 3074263
什么是DOI,文献DOI怎么找? 1688684
邀请新用户注册赠送积分活动 812320
科研通“疑难数据库(出版商)”最低求助积分说明 766986