已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Diagnostic nomogram based on intralesional and perilesional radiomics features and clinical factors of clinically significant prostate cancer

医学 列线图 无线电技术 前列腺癌 磁共振成像 接收机工作特性 放射科 单变量 有效扩散系数 单变量分析 核医学 癌症 多元分析 肿瘤科 多元统计 内科学 统计 数学
作者
Han Zhang,Xianglin Li,Yongxia Zhang,Cheng Huang,Yongqiang Wang,Ping Yang,Shaofeng Duan,Ning Mao,Haizhu Xie
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:53 (5): 1550-1558 被引量:20
标识
DOI:10.1002/jmri.27486
摘要

Abstract Previous studies on the value of radiomics for diagnosing clinically significant prostate cancer (csPCa) only utilized intralesional features. However, the role of tumor microenvironment is important in tumor generation and progression. The aim of this study is to build and validate a nomogram based on perilesional and intralesional radiomics features and clinical factors for csPCa. This is a retrospective study, which included 140 patients who underwent prostate magnetic resonance imaging (MRI). This study used 3. 0T T2 ‐weighted imaging, apparent diffusion coefficient maps (derived from diffusion‐weighted images), and dynamic contrast‐enhanced MRI . Region of interest (ROI)s were segmented by two radiologists. Intralesional and combined radiomics signatures were built based on radiomics features extracted from intralesional and the combination of radiomics features extracted from intralesional and perilesional volumes. Serum total prostate‐specific antigen level and combined radiomics signature scores were used to construct a diagnostic nomogram. Intraclass correlation efficient analysis was used to test intra‐ and inter‐rater agreement of radiomics features. Min‐max scalar was used for normalization. One‐way analysis of variance or the Mann–Whitney U ‐test was used for univariate analysis. Receiver operating characteristic curve analysis, accuracy, balanced accuracy, and F1‐score were used to evaluate radiomics signatures and the nomogram. Also, the nomogram was evaluated using decision curve analysis in testing cohort. Delong test was used to compare area under the curves (AUCs). Statistical significance was set at p < 0.05. In testing cohort, AUC, accuracy, balanced accuracy, and F1‐score of combined radiomics signature (0.94, 0.83, 0.80, and 0.87, respectively) were all higher than that of intralesional radiomics signature (0.90, 0.77, 0.74, and 0.83, respectively). The difference between AUCs was insignificant ( p of 0.19). AUC, accuracy, balanced accuracy, and F1‐score of the nomogram were 0.96, 0.94, 0.95, and 0.95, respectively. Nomogram was clinically useful when threshold probability of a patient is higher than 0.06. Perilesional radiomics features improved the discrimination ability of the radiomics signature. Diagnostic nomogram had a good performance. Level of Evidence 3. Technical Efficacy Stage 2.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
Bin_Liu发布了新的文献求助10
3秒前
Cheng完成签到 ,获得积分0
4秒前
高屋建瓴完成签到,获得积分10
4秒前
strelias完成签到,获得积分10
5秒前
山复尔尔完成签到 ,获得积分10
5秒前
蓝华完成签到 ,获得积分10
5秒前
牢孙发布了新的文献求助30
5秒前
单薄的夜阑完成签到,获得积分10
5秒前
江流有声完成签到 ,获得积分10
6秒前
几两完成签到 ,获得积分10
9秒前
cc完成签到 ,获得积分10
10秒前
成就的靖琪完成签到,获得积分10
11秒前
13秒前
是多多呀完成签到 ,获得积分10
14秒前
万能图书馆应助橘子脉动采纳,获得10
14秒前
健忘草莓发布了新的文献求助10
16秒前
znlion完成签到,获得积分10
17秒前
陈砍砍完成签到 ,获得积分10
18秒前
张先生2365完成签到,获得积分10
18秒前
dinglingling发布了新的文献求助30
18秒前
yyy完成签到 ,获得积分10
19秒前
19秒前
龙叶静完成签到 ,获得积分10
20秒前
蝴蝶完成签到 ,获得积分10
20秒前
孤标傲世完成签到 ,获得积分10
20秒前
wenlong完成签到 ,获得积分10
22秒前
科研狗完成签到 ,获得积分0
22秒前
Chris完成签到 ,获得积分0
25秒前
czj完成签到 ,获得积分10
26秒前
敞敞亮亮完成签到 ,获得积分10
26秒前
在水一方完成签到 ,获得积分10
27秒前
星野Nana_发布了新的文献求助10
29秒前
Haki完成签到,获得积分10
31秒前
小HO完成签到 ,获得积分10
32秒前
斯文败类应助小C同学采纳,获得10
32秒前
33秒前
烟雨梦兮发布了新的文献求助10
34秒前
老实的抽屉完成签到 ,获得积分10
36秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 680
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
PBSM: Predictive Bi-Preference Stable Matching in Spatial Crowdsourcing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4123881
求助须知:如何正确求助?哪些是违规求助? 3661751
关于积分的说明 11589829
捐赠科研通 3362373
什么是DOI,文献DOI怎么找? 1847535
邀请新用户注册赠送积分活动 911983
科研通“疑难数据库(出版商)”最低求助积分说明 827809