A Review of Artificial Intelligence in Precise Assessment of Programmed Cell Death-ligand 1 and Tumor-infiltrating Lymphocytes in Non−Small Cell Lung Cancer

细胞 医学 程序性细胞死亡 肺癌 Fas配体 癌症研究 配体(生物化学) 病理 细胞凋亡 生物 内科学 受体 生物化学
作者
Jianghua Wu,Dongmei Lin
出处
期刊:Advances in Anatomic Pathology [Ovid Technologies (Wolters Kluwer)]
卷期号:28 (6): 439-445 被引量:17
标识
DOI:10.1097/pap.0000000000000322
摘要

Advances in immunotherapy have increased the need for stratified predictive biomarkers in patients with non−small cell lung cancer. However, precise evaluation of tumor tissue-based immune biomarkers, such as programmed cell death-ligand 1 (PD-L1) and the characteristics of tumor infiltrating lymphocytes (TILs), is a challenge in clinical practice. In recent years, the digitization of whole-slide images of tissue has accelerated the implementation of artificial intelligence (AI) approaches in tumor pathology and provided an opportunity to use AI tools to improve the interpretation of immune biomarkers. This review describes the current challenges in the assessment of PD-L1 scoring and TILs and demonstrates the role of AI in helping pathologists integrate PD-L1 and biomarkers of the tumor immune microenvironment. Computer-aided PD-L1 scoring is highly consistent with pathologists and reduces the variation among interobservers, providing a promising diagnostic tool in pathology clinics. In addition, applications of image analysis algorithms, in combination with multiplex staining, enable in-depth quantitative and spatial analysis of the broader tumor microenvironment. Upon combining digital pathology and AI, an automatic analysis system of PD-L1 and TILs, which was established using a set of digital staining images and deep learning algorithms, might be an effective way to overcome the challenges in the precise assessment of immune biomarkers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Miao完成签到,获得积分10
刚刚
刚刚
刚刚
1111完成签到,获得积分10
刚刚
lailight发布了新的文献求助20
1秒前
杨震发布了新的文献求助10
1秒前
Djtc发布了新的文献求助10
2秒前
XJC完成签到,获得积分10
2秒前
TGU的小马同学完成签到,获得积分10
2秒前
Jasper应助he采纳,获得10
3秒前
火星上映安给火星上映安的求助进行了留言
3秒前
量子星尘发布了新的文献求助10
4秒前
顾矜应助不倒翁37采纳,获得10
4秒前
ng9jR2发布了新的文献求助10
4秒前
缓冲中发布了新的文献求助10
5秒前
5秒前
超大一块小饼干完成签到,获得积分10
6秒前
科研通AI6应助lu采纳,获得10
6秒前
6秒前
Chenlinhong完成签到 ,获得积分10
6秒前
7秒前
杜玥宁完成签到,获得积分10
7秒前
iNk应助窦誉采纳,获得20
8秒前
从从余余完成签到 ,获得积分10
8秒前
小叶子完成签到,获得积分10
8秒前
gsc完成签到,获得积分10
8秒前
顾矜应助三水采纳,获得10
9秒前
9秒前
jdy发布了新的文献求助10
9秒前
要减肥若烟完成签到,获得积分20
10秒前
bkagyin应助sefsfw采纳,获得20
11秒前
yanjiusheng发布了新的文献求助10
11秒前
lailight完成签到,获得积分10
11秒前
清脆的紫青关注了科研通微信公众号
11秒前
12秒前
12秒前
完美世界应助畅快自行车采纳,获得10
12秒前
13秒前
14秒前
尕娃完成签到 ,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Handbook of Spirituality, Health, and Well-Being 800
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5526777
求助须知:如何正确求助?哪些是违规求助? 4616768
关于积分的说明 14555797
捐赠科研通 4555282
什么是DOI,文献DOI怎么找? 2496282
邀请新用户注册赠送积分活动 1476561
关于科研通互助平台的介绍 1448126