已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multi-View Learning a Decomposable Affinity Matrix via Tensor Self-Representation on Grassmann Manifold

聚类分析 人工智能 张量(固有定义) 数学 特征学习 子空间拓扑 计算机科学 模式识别(心理学) 纯数学
作者
Haiyan Wang,Guoqiang Han,Bin Zhang,Guihua Tao,Hongmin Cai
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:30: 8396-8409 被引量:12
标识
DOI:10.1109/tip.2021.3114995
摘要

Multi-view clustering aims to partition objects into potential categories by utilizing cross-view information. One of the core issues is to sufficiently leverage different views to learn a latent subspace, within which the clustering task is performed. Recently, it has been shown that representing the multi-view data by a tensor and then learning a latent self-expressive tensor is effective. However, early works mainly focus on learning essential tensor representation from multi-view data and the resulted affinity matrix is considered as a byproduct or is computed by a simple average in Euclidean space, thereby destroying the intrinsic clustering structure. To that end, here we proposed a novel multi-view clustering method to directly learn a well-structured affinity matrix driven by the clustering task on Grassmann manifold. Specifically, we firstly employed a tensor learning model to unify multiple feature spaces into a latent low-rank tensor space. Then each individual view was merged on Grassmann manifold to obtain both an integrative subspace and a consensus affinity matrix, driven by clustering task. The two parts are modeled by a unified objective function and optimized jointly to mine a decomposable affinity matrix. Extensive experiments on eight real-world datasets show that our method achieves superior performances over other popular methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助昵昵昵昵呀采纳,获得10
1秒前
英俊的铭应助优秀黑夜采纳,获得10
2秒前
ceeray23发布了新的文献求助20
3秒前
3秒前
北海西贝完成签到,获得积分10
5秒前
叶子完成签到 ,获得积分10
5秒前
彭于晏应助无误采纳,获得10
6秒前
文静栾完成签到 ,获得积分10
7秒前
7秒前
hhh发布了新的文献求助10
8秒前
零度完成签到 ,获得积分10
13秒前
14秒前
SS完成签到,获得积分0
15秒前
chenlc971125完成签到 ,获得积分10
16秒前
彩色的荔枝完成签到 ,获得积分10
17秒前
读研霹雳完成签到 ,获得积分10
19秒前
华仔应助qijia采纳,获得10
20秒前
aa发布了新的文献求助10
21秒前
YEGE完成签到,获得积分10
22秒前
23秒前
善学以致用应助无误采纳,获得10
23秒前
昵昵昵昵呀完成签到,获得积分20
23秒前
24秒前
26秒前
FashionBoy应助科研通管家采纳,获得30
26秒前
26秒前
情怀应助科研通管家采纳,获得10
26秒前
豆子应助科研通管家采纳,获得20
26秒前
王雪茹发布了新的文献求助10
28秒前
qijia发布了新的文献求助10
32秒前
36秒前
qijia完成签到,获得积分20
38秒前
40秒前
40秒前
侯雪晴完成签到 ,获得积分10
40秒前
小白狗完成签到,获得积分10
40秒前
Ava应助接好运采纳,获得10
41秒前
优美飞柏完成签到,获得积分10
41秒前
小北发布了新的文献求助10
41秒前
45秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
宽量程高线性度柔性压力传感器的逆向设计 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3980843
求助须知:如何正确求助?哪些是违规求助? 3524572
关于积分的说明 11222033
捐赠科研通 3262022
什么是DOI,文献DOI怎么找? 1801015
邀请新用户注册赠送积分活动 879591
科研通“疑难数据库(出版商)”最低求助积分说明 807358