Multi-View Learning a Decomposable Affinity Matrix via Tensor Self-Representation on Grassmann Manifold

聚类分析 人工智能 张量(固有定义) 数学 特征学习 子空间拓扑 计算机科学 模式识别(心理学) 纯数学
作者
Haiyan Wang,Guoqiang Han,Bin Zhang,Guihua Tao,Hongmin Cai
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:30: 8396-8409 被引量:12
标识
DOI:10.1109/tip.2021.3114995
摘要

Multi-view clustering aims to partition objects into potential categories by utilizing cross-view information. One of the core issues is to sufficiently leverage different views to learn a latent subspace, within which the clustering task is performed. Recently, it has been shown that representing the multi-view data by a tensor and then learning a latent self-expressive tensor is effective. However, early works mainly focus on learning essential tensor representation from multi-view data and the resulted affinity matrix is considered as a byproduct or is computed by a simple average in Euclidean space, thereby destroying the intrinsic clustering structure. To that end, here we proposed a novel multi-view clustering method to directly learn a well-structured affinity matrix driven by the clustering task on Grassmann manifold. Specifically, we firstly employed a tensor learning model to unify multiple feature spaces into a latent low-rank tensor space. Then each individual view was merged on Grassmann manifold to obtain both an integrative subspace and a consensus affinity matrix, driven by clustering task. The two parts are modeled by a unified objective function and optimized jointly to mine a decomposable affinity matrix. Extensive experiments on eight real-world datasets show that our method achieves superior performances over other popular methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助rmbsLHC采纳,获得10
刚刚
1秒前
2秒前
Tia发布了新的文献求助10
5秒前
丙子哥发布了新的文献求助10
6秒前
在水一方应助孙婉莹采纳,获得10
7秒前
9秒前
Ricky发布了新的文献求助10
10秒前
jxcandice完成签到,获得积分10
11秒前
ding应助LikeX采纳,获得10
11秒前
kkrian完成签到,获得积分10
12秒前
小宋应助mini采纳,获得10
12秒前
姜黎发布了新的文献求助10
14秒前
Tia完成签到,获得积分20
15秒前
15秒前
zhenzheng完成签到 ,获得积分10
16秒前
飞儿随缘发布了新的文献求助10
18秒前
bkagyin应助wyx采纳,获得10
19秒前
20秒前
凉月壹贰完成签到,获得积分20
21秒前
NexusExplorer应助xh采纳,获得10
22秒前
INGH完成签到,获得积分10
23秒前
陈帅发布了新的文献求助10
24秒前
26秒前
Beautieat1完成签到,获得积分10
28秒前
29秒前
善学以致用应助Yi采纳,获得10
30秒前
31秒前
陈帅完成签到,获得积分10
32秒前
口口发布了新的文献求助10
32秒前
xh发布了新的文献求助10
33秒前
Dr.Wei完成签到,获得积分10
35秒前
新威宝贝发布了新的文献求助10
36秒前
我是老大应助Tia采纳,获得10
36秒前
INGH发布了新的文献求助10
36秒前
39秒前
40秒前
Shelby发布了新的文献求助10
43秒前
正直的冰萍完成签到,获得积分20
44秒前
45秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
武汉作战 石川达三 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Fractional flow reserve- and intravascular ultrasound-guided strategies for intermediate coronary stenosis and low lesion complexity in patients with or without diabetes: a post hoc analysis of the randomised FLAVOUR trial 300
Effects of Receptive Music Therapy Combined with Virtual Reality on Prevalent Symptoms in Patients with Advanced Cancer 282
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3811277
求助须知:如何正确求助?哪些是违规求助? 3355696
关于积分的说明 10377245
捐赠科研通 3072493
什么是DOI,文献DOI怎么找? 1687627
邀请新用户注册赠送积分活动 811691
科研通“疑难数据库(出版商)”最低求助积分说明 766762