Deep Multimodal Fusion Network for Semantic Segmentation Using Remote Sensing Image and LiDAR Data

计算机科学 激光雷达 人工智能 遥感 点云 深度学习 传感器融合 计算机视觉 惯性测量装置 模式识别(心理学) 地质学
作者
Yangjie Sun,Zhongliang Fu,Chuanxia Sun,Yinglei Hu,Shengyuan Zhang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-18 被引量:69
标识
DOI:10.1109/tgrs.2021.3108352
摘要

Extracting semantic information from very-high-resolution (VHR) aerial images is a prominent topic in the Earth observation research. An increasing number of different sensor platforms are appearing in remote sensing, each of which can provide corresponding multimodal supplemental or enhanced information, such as optical images, light detection and ranging (LiDAR) point clouds, infrared images, or inertial measurement unit (IMU) data. However, these current deep networks for LiDAR and VHR images have not fully utilized the complete potential of multimodal data. The stacked multimodal fusion network (MFNet) ignores the structural differences between the modalities and the manual statistical characteristics within the modalities. For multimodal remote sensing data and its corresponding carefully designed handcrafted features, we designed a novel deep MFNet that can use multimodal VHR aerial images and LiDAR data and the corresponding intramodal features, such as LiDAR-derived features [slope and normalized digital surface model (NDSM)] and imagery-derived features [infrared–red–green (IRRG), normalized difference vegetation index (NDVI), and difference of Gaussian (DoG)]. Technically, we introduce the attention mechanism and multimodal learning to adaptively fuse intermodal and intramodal features. Specifically, we designed a multimodal fusion mechanism, pyramid dilation blocks, and a multilevel feature fusion module. Through these modules, our network realized the adaptive fusion of multimodal features, improved the receptive field, and enhanced the global-to-local contextual fusion effect. Moreover, we used a multiscale supervision training scheme to optimize the network. Extensive experimental results and ablation studies on the ISPRS semantic dataset and IEEE GRSS DFC Zeebrugge dataset show the effectiveness of our proposed MFNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
xiaowang发布了新的文献求助10
1秒前
byx发布了新的文献求助10
1秒前
2秒前
李1完成签到,获得积分10
2秒前
3秒前
3秒前
烟花应助sujinyu采纳,获得30
3秒前
4秒前
4秒前
4秒前
挪威完成签到,获得积分10
5秒前
呆萌如容完成签到 ,获得积分10
5秒前
止观发布了新的文献求助10
5秒前
6秒前
xiaowang完成签到,获得积分20
6秒前
合适元珊发布了新的文献求助10
7秒前
lin0601发布了新的文献求助10
7秒前
夜空中最亮的星完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
沉静的傲柏发布了新的文献求助100
7秒前
青墨宿发布了新的文献求助10
8秒前
王雪儿哈哈哈完成签到,获得积分10
8秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
田様应助清爽的小蜜蜂采纳,获得10
9秒前
善良茗茗完成签到,获得积分10
9秒前
12秒前
manjusaka发布了新的文献求助10
12秒前
12秒前
惊鸿客完成签到,获得积分10
13秒前
星辰大海应助入变采纳,获得10
13秒前
13秒前
迷路怜珊完成签到,获得积分20
13秒前
四月想毕业完成签到,获得积分10
16秒前
16秒前
17秒前
盼盼盼完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5785091
求助须知:如何正确求助?哪些是违规求助? 5685673
关于积分的说明 15466575
捐赠科研通 4914208
什么是DOI,文献DOI怎么找? 2645113
邀请新用户注册赠送积分活动 1592892
关于科研通互助平台的介绍 1547293