IoT Network Traffic Classification Using Machine Learning Algorithms: An Experimental Analysis

计算机科学 机器学习 交通分类 物联网 人工智能 服务质量 统计分类 算法 计算机网络 嵌入式系统
作者
Rakesh Kumar,Mayank Swarnkar,Gaurav Singal,Neeraj Kumar
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:9 (2): 989-1008 被引量:68
标识
DOI:10.1109/jiot.2021.3121517
摘要

Internet of Things (IoT) refers to a wide variety of embedded devices connected to the Internet, enabling them to transmit and share information in smart environments with each other. The regular monitoring of IoT network traffic generated from IoT devices is important for their proper functioning and detection of malicious activities. One such crucial activity is the classification of IoT devices in the network traffic. It enables the administrator to monitor the activities of IoT devices which can be useful for proper implementation of Quality of Service, detect malicious IoT devices, etc. In the literature, various methods are proposed for IoT traffic classification using various machine learning algorithms. However, the accuracy of these machine learning algorithms depends on the data generated from various IoT devices, features extracted from network traffic, site at which IoT is deployed, etc. Moreover, the selection of features and machine learning algorithms are manual operations that are prone to error. Therefore, it is important to study the network traffic characteristics as well as suitable machine learning algorithms for accurate and optimized IoT traffic classification. In this article, we perform an in-depth comparative analysis of various popular machine learning algorithms using different effective features extracted from IoT network traffic. We utilize a public data set having 20 days of network traces generated from 20 popular IoT devices. Network traces are first processed to extract the significant features. We then selected state-of-the-art machine learning algorithms based on the recent survey papers for the IoT traffic classification. We then comparatively evaluated the performance of those machine learning algorithms on the basis of classification accuracy, speed, training time, etc. Finally, we provided a few suggestions for selecting the machine learning algorithm for different use cases based on the obtained results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
donghai完成签到,获得积分10
1秒前
LXZ完成签到,获得积分10
1秒前
2秒前
Pepsi发布了新的文献求助10
3秒前
4秒前
6秒前
直立行走发布了新的文献求助10
9秒前
单纯的小土豆完成签到,获得积分10
9秒前
dfvbnm发布了新的文献求助10
13秒前
13秒前
陈俊雷完成签到 ,获得积分10
14秒前
Anjianfubai发布了新的文献求助10
19秒前
洁净的士晋完成签到,获得积分10
21秒前
dfvbnm完成签到,获得积分20
23秒前
慕青应助谭小谭采纳,获得10
23秒前
23秒前
大模型应助douzi采纳,获得10
26秒前
27秒前
ShellyHan发布了新的文献求助10
28秒前
qiao应助科研通管家采纳,获得10
29秒前
CodeCraft应助科研通管家采纳,获得10
29秒前
华仔应助科研通管家采纳,获得10
29秒前
研友_VZG7GZ应助科研通管家采纳,获得10
29秒前
SciGPT应助科研通管家采纳,获得10
29秒前
Akim应助科研通管家采纳,获得10
29秒前
Orange应助科研通管家采纳,获得10
29秒前
英俊的铭应助科研通管家采纳,获得10
29秒前
科研通AI5应助科研通管家采纳,获得10
29秒前
彭于晏应助科研通管家采纳,获得10
29秒前
科研通AI5应助科研通管家采纳,获得10
30秒前
乐乐应助科研通管家采纳,获得10
30秒前
Jasper应助Mushroom007采纳,获得10
30秒前
科研通AI2S应助科研通管家采纳,获得10
30秒前
大模型应助科研通管家采纳,获得10
30秒前
CodeCraft应助科研通管家采纳,获得10
30秒前
wy.he应助科研通管家采纳,获得30
30秒前
科研通AI5应助科研通管家采纳,获得10
30秒前
顾矜应助科研通管家采纳,获得10
30秒前
斯文败类应助科研通管家采纳,获得30
30秒前
科研通AI2S应助科研通管家采纳,获得10
30秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Fashion Brand Visual Design Strategy Based on Value Co-creation 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777911
求助须知:如何正确求助?哪些是违规求助? 3323444
关于积分的说明 10214462
捐赠科研通 3038671
什么是DOI,文献DOI怎么找? 1667606
邀请新用户注册赠送积分活动 798207
科研通“疑难数据库(出版商)”最低求助积分说明 758304