Machine Learning for Predicting the 3-Year Risk of Incident Diabetes in Chinese Adults

列线图 接收机工作特性 医学 逐步回归 糖尿病 体质指数 队列 预测建模 统计 机器学习 人工智能 内科学 计算机科学 数学 内分泌学
作者
Yang Wu,Haofei Hu,Jinlin Cai,Runtian Chen,Xin Zuo,Heng Cheng,Dewen Yan
出处
期刊:Frontiers in Public Health [Frontiers Media]
卷期号:9 被引量:19
标识
DOI:10.3389/fpubh.2021.626331
摘要

Purpose: We aimed to establish and validate a risk assessment system that combines demographic and clinical variables to predict the 3-year risk of incident diabetes in Chinese adults. Methods: A 3-year cohort study was performed on 15,928 Chinese adults without diabetes at baseline. All participants were randomly divided into a training set (n = 7,940) and a validation set (n = 7,988). XGBoost method is an effective machine learning technique used to select the most important variables from candidate variables. And we further established a stepwise model based on the predictors chosen by the XGBoost model. The area under the receiver operating characteristic curve (AUC), decision curve and calibration analysis were used to assess discrimination, clinical use and calibration of the model, respectively. The external validation was performed on a cohort of 11,113 Japanese participants. Result: In the training and validation sets, 148 and 145 incident diabetes cases occurred. XGBoost methods selected the 10 most important variables from 15 candidate variables. Fasting plasma glucose (FPG), body mass index (BMI) and age were the top 3 important variables. And we further established a stepwise model and a prediction nomogram. The AUCs of the stepwise model were 0.933 and 0.910 in the training and validation sets, respectively. The Hosmer-Lemeshow test showed a perfect fit between the predicted diabetes risk and the observed diabetes risk (p = 0.068 for the training set, p = 0.165 for the validation set). Decision curve analysis presented the clinical use of the stepwise model and there was a wide range of alternative threshold probability spectrum. And there were almost no the interactions between these predictors (most P-values for interaction >0.05). Furthermore, the AUC for the external validation set was 0.830, and the Hosmer-Lemeshow test for the external validation set showed no statistically significant difference between the predicted diabetes risk and observed diabetes risk (P = 0.824). Conclusion: We established and validated a risk assessment system for characterizing the 3-year risk of incident diabetes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李科研完成签到,获得积分10
刚刚
1秒前
高玉娇发布了新的文献求助10
2秒前
3秒前
4秒前
yangfan发布了新的文献求助30
6秒前
6秒前
杨榆藤完成签到,获得积分10
7秒前
8秒前
9秒前
10秒前
易语发布了新的文献求助10
10秒前
夏小川完成签到 ,获得积分10
11秒前
11秒前
小王完成签到,获得积分10
12秒前
Ruby发布了新的文献求助10
13秒前
lll发布了新的文献求助10
14秒前
16秒前
yangfan完成签到,获得积分10
17秒前
17秒前
liangsheng发布了新的文献求助10
20秒前
20秒前
所所应助高玉娇采纳,获得10
21秒前
21秒前
kekkekh欧克发布了新的文献求助10
23秒前
wwho_O完成签到 ,获得积分10
24秒前
邱威完成签到 ,获得积分10
24秒前
24秒前
Glassy完成签到,获得积分10
25秒前
今天只做一件事应助Ryan采纳,获得50
25秒前
27秒前
29秒前
33秒前
研友_VZG7GZ应助FightPeng采纳,获得30
35秒前
35秒前
Ming发布了新的文献求助10
35秒前
35秒前
36秒前
所所应助科研通管家采纳,获得10
36秒前
36秒前
高分求助中
ФОРМИРОВАНИЕ АО "МЕЖДУНАРОДНАЯ КНИГА" КАК ВАЖНЕЙШЕЙ СИСТЕМЫ ОТЕЧЕСТВЕННОГО КНИГОРАСПРОСТРАНЕНИЯ 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Finite Groups: An Introduction 800
Research on WLAN scenario optimisation policy based on IoT smart campus 500
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3906083
求助须知:如何正确求助?哪些是违规求助? 3451627
关于积分的说明 10865698
捐赠科研通 3176972
什么是DOI,文献DOI怎么找? 1755187
邀请新用户注册赠送积分活动 848697
科研通“疑难数据库(出版商)”最低求助积分说明 791207