Machine Learning for Predicting the 3-Year Risk of Incident Diabetes in Chinese Adults

列线图 接收机工作特性 医学 逐步回归 糖尿病 体质指数 队列 预测建模 统计 机器学习 人工智能 内科学 计算机科学 数学 内分泌学
作者
Yang Wu,Haofei Hu,Jinlin Cai,Runtian Chen,Xin Zuo,Heng Cheng,Dewen Yan
出处
期刊:Frontiers in Public Health [Frontiers Media]
卷期号:9 被引量:19
标识
DOI:10.3389/fpubh.2021.626331
摘要

Purpose: We aimed to establish and validate a risk assessment system that combines demographic and clinical variables to predict the 3-year risk of incident diabetes in Chinese adults. Methods: A 3-year cohort study was performed on 15,928 Chinese adults without diabetes at baseline. All participants were randomly divided into a training set (n = 7,940) and a validation set (n = 7,988). XGBoost method is an effective machine learning technique used to select the most important variables from candidate variables. And we further established a stepwise model based on the predictors chosen by the XGBoost model. The area under the receiver operating characteristic curve (AUC), decision curve and calibration analysis were used to assess discrimination, clinical use and calibration of the model, respectively. The external validation was performed on a cohort of 11,113 Japanese participants. Result: In the training and validation sets, 148 and 145 incident diabetes cases occurred. XGBoost methods selected the 10 most important variables from 15 candidate variables. Fasting plasma glucose (FPG), body mass index (BMI) and age were the top 3 important variables. And we further established a stepwise model and a prediction nomogram. The AUCs of the stepwise model were 0.933 and 0.910 in the training and validation sets, respectively. The Hosmer-Lemeshow test showed a perfect fit between the predicted diabetes risk and the observed diabetes risk (p = 0.068 for the training set, p = 0.165 for the validation set). Decision curve analysis presented the clinical use of the stepwise model and there was a wide range of alternative threshold probability spectrum. And there were almost no the interactions between these predictors (most P-values for interaction >0.05). Furthermore, the AUC for the external validation set was 0.830, and the Hosmer-Lemeshow test for the external validation set showed no statistically significant difference between the predicted diabetes risk and observed diabetes risk (P = 0.824). Conclusion: We established and validated a risk assessment system for characterizing the 3-year risk of incident diabetes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
s1kl完成签到,获得积分10
3秒前
Dr.老王关注了科研通微信公众号
3秒前
Jason完成签到,获得积分10
5秒前
feijelly完成签到,获得积分10
5秒前
Chen发布了新的文献求助10
7秒前
12秒前
小王完成签到 ,获得积分10
13秒前
冷酷洋葱发布了新的文献求助20
17秒前
NanNan626完成签到,获得积分10
21秒前
duan完成签到 ,获得积分10
23秒前
桐桐应助无处不在采纳,获得10
24秒前
26秒前
Plum22完成签到 ,获得积分10
31秒前
zrs发布了新的文献求助10
33秒前
33秒前
kk完成签到 ,获得积分10
35秒前
大个应助advance采纳,获得30
35秒前
科研通AI5应助zrs采纳,获得10
37秒前
38秒前
39秒前
ikun0000完成签到,获得积分10
40秒前
40秒前
42秒前
JJ完成签到 ,获得积分10
42秒前
烂漫念文发布了新的文献求助10
44秒前
45秒前
欢呼煎蛋发布了新的文献求助30
45秒前
现实的俊驰完成签到 ,获得积分10
46秒前
46秒前
47秒前
无处不在发布了新的文献求助10
47秒前
advance发布了新的文献求助30
49秒前
学术通zzz发布了新的文献求助10
50秒前
烂漫念文完成签到,获得积分10
50秒前
怡然依柔完成签到,获得积分10
51秒前
院士候选人之一完成签到,获得积分10
52秒前
52秒前
Moihan完成签到,获得积分10
53秒前
无处不在完成签到 ,获得积分10
55秒前
stqs完成签到,获得积分10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Fashion Brand Visual Design Strategy Based on Value Co-creation 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777918
求助须知:如何正确求助?哪些是违规求助? 3323510
关于积分的说明 10214551
捐赠科研通 3038674
什么是DOI,文献DOI怎么找? 1667606
邀请新用户注册赠送积分活动 798207
科研通“疑难数据库(出版商)”最低求助积分说明 758315