已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Machine learning-based methods in structural reliability analysis: A review

可靠性(半导体) 机器学习 克里金 计算机科学 蒙特卡罗方法 人工智能 人工神经网络 支持向量机 概率逻辑 重要性抽样 可靠性工程 工程类 数学 统计 物理 量子力学 功率(物理)
作者
Sajad Saraygord Afshari,Fatemeh Enayatollahi,Xiangyang Xu,Xihui Liang
出处
期刊:Reliability Engineering & System Safety [Elsevier]
卷期号:219: 108223-108223 被引量:316
标识
DOI:10.1016/j.ress.2021.108223
摘要

Structural Reliability analysis (SRA) is one of the prominent fields in civil and mechanical engineering. However, an accurate SRA in most cases deals with complex and costly numerical problems. Machine learning-based (ML) techniques have been introduced to the SRA problems to deal with this huge computational cost and increase accuracy. This paper presents a review of the development and use of ML models in SRA. The review includes the most common types of ML methods used in SRA. More specifically, the application of artificial neural networks (ANN), support vector machines (SVM), Bayesian methods and Kriging estimation with active learning perspective in SRA are explained, and a state-of-the-art review of the prominent literature in these fields is presented. Aiming towards a fast and accurate SRA, the ML techniques adopted for the approximation of the limit state function with Monte Carlo simulation (MCS), first/second-order reliability methods (FORM/SORM) or MCS with importance sampling well as the methods for efficiently computing the probabilities of rare events in complex structural systems. In this regard, the focus of the current manuscript is on the different models’ structures and diverse applications of each ML method in different aspects of SRA. Moreover, imperative considerations on the management of samples in the Monte Carlo simulation for SRA purposes and the treatment of the SRA problem as pattern recognition or classification task are provided. This review helps the researchers in civil and mechanical engineering, especially those who are focused on reliability and structural analysis or dealing with product assurance problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助科研通管家采纳,获得10
刚刚
刚刚
1秒前
ly完成签到,获得积分10
3秒前
彭于晏应助吕吕采纳,获得10
5秒前
FashionBoy应助刘慧鑫采纳,获得10
5秒前
6秒前
55发布了新的文献求助10
6秒前
8秒前
画晴完成签到,获得积分10
9秒前
爱笑天德完成签到,获得积分10
10秒前
11秒前
科研通AI6应助等待的盼波采纳,获得50
11秒前
Zhou发布了新的文献求助10
12秒前
14秒前
14秒前
15秒前
关正卿完成签到,获得积分20
15秒前
淡抹青春完成签到,获得积分10
16秒前
16秒前
内向映天完成签到 ,获得积分10
17秒前
嘻嘻嘻完成签到,获得积分10
17秒前
传奇3应助满意谷波采纳,获得10
17秒前
卷毛v发布了新的文献求助10
17秒前
凡凡发布了新的文献求助10
18秒前
qinghuan完成签到 ,获得积分10
18秒前
19秒前
科研通AI6应助彩色的沛凝采纳,获得10
20秒前
啁啾完成签到,获得积分10
20秒前
Akim应助cc采纳,获得10
20秒前
光之霓裳完成签到 ,获得积分10
21秒前
NexusExplorer应助秋霜玉采纳,获得10
21秒前
kekong发布了新的文献求助20
22秒前
qiqibaby发布了新的文献求助10
23秒前
情怀应助羞涩的千萍采纳,获得10
25秒前
科研通AI6应助Elon采纳,获得10
27秒前
SciGPT应助实验室同学采纳,获得10
31秒前
小陈完成签到 ,获得积分20
32秒前
32秒前
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5548776
求助须知:如何正确求助?哪些是违规求助? 4633988
关于积分的说明 14633429
捐赠科研通 4575623
什么是DOI,文献DOI怎么找? 2509118
邀请新用户注册赠送积分活动 1485206
关于科研通互助平台的介绍 1456237