Achieve accurate recognition of 3D point cloud images by studying the scattering characteristics of typical targets

点云 计算机科学 云计算 点(几何) 散射 遥感 人工智能 计算机视觉 光学 地质学 物理 几何学 数学 操作系统
作者
Qingyan Li,Guohui Yang,Shiyu Yan,Rundong Fan,Yi Zhang,Chunhui Wang
出处
期刊:Infrared Physics & Technology [Elsevier BV]
卷期号:117: 103852-103852 被引量:4
标识
DOI:10.1016/j.infrared.2021.103852
摘要

• Theoretical modeling of the scattering characteristics of some typical lidar targets is carried out. • We propose a double-scale intensity-weighted centroid algorithm to extract the intensity and distance information. • The lidar system performed scanning experiments on complex scenes. Three-dimensional imaging lidar has been widely used in various fields due to its high measurement accuracy, strong directionality, and three-dimensional visualization. At present, the three-dimensional point cloud imaging method of lidar mainly depends on the distance information of the target, but the intensity information of the target can play an auxiliary role in the recognition of the target, and it has also received extensive attention. The combination of intensity information and distance information enables the system to make more accurate decisions and improve the redundancy of the system. When scanning non-cooperative targets, if there is only distance information, the target will not be accurately identified, which may cause errors in decision-making. This paper studies and analyzes the scattering characteristics of typical lidar targets. The intensity of the scattered echo signal of the target is related to the target material, target distance, gray value and detection angle, so the detector's receiving scattering rate is different. For the extraction of the intensity and the distance signal, we propose a double-scale intensity-weighted centroid algorithm to achieve it, which ensures the accuracy of the signal. To this end, we build a database of the scattering characteristics of related targets, combined with the original distance information to realize the accurate recognition of the target in the lidar 3D point cloud image.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
乔心发布了新的文献求助10
1秒前
Ava应助Serein采纳,获得10
2秒前
霸气的思柔完成签到,获得积分10
5秒前
无花果应助乔心采纳,获得10
5秒前
5秒前
shendu完成签到 ,获得积分10
6秒前
6秒前
7秒前
mawanyu发布了新的文献求助10
8秒前
ppf发布了新的文献求助10
10秒前
努力向流域靠近完成签到,获得积分10
12秒前
小丸子呀发布了新的文献求助10
13秒前
13击完成签到,获得积分10
13秒前
赘婿应助wdr采纳,获得10
15秒前
诚心语琴关注了科研通微信公众号
16秒前
ppf完成签到,获得积分20
17秒前
18秒前
土豪的摩托完成签到 ,获得积分10
23秒前
哈哈哈完成签到 ,获得积分10
24秒前
Serein发布了新的文献求助10
25秒前
阔达代芹完成签到,获得积分10
27秒前
30秒前
文瑄完成签到 ,获得积分0
31秒前
日出发布了新的文献求助10
34秒前
yalyn完成签到,获得积分10
34秒前
38秒前
酷炫画板完成签到 ,获得积分10
39秒前
39秒前
41秒前
wdr发布了新的文献求助10
44秒前
ECHO完成签到,获得积分10
44秒前
e746700020发布了新的文献求助10
46秒前
哈哈完成签到,获得积分10
47秒前
47秒前
科研通AI5应助科研通管家采纳,获得10
50秒前
香蕉觅云应助科研通管家采纳,获得10
50秒前
CodeCraft应助科研通管家采纳,获得10
50秒前
50秒前
54秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781878
求助须知:如何正确求助?哪些是违规求助? 3327449
关于积分的说明 10231282
捐赠科研通 3042334
什么是DOI,文献DOI怎么找? 1669967
邀请新用户注册赠送积分活动 799446
科研通“疑难数据库(出版商)”最低求助积分说明 758808