清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Deep learning for the quality control of thermoforming food packages

计算机科学 质量(理念) 卷积神经网络 过程(计算) 热成型 自动化 人工智能 深度学习 控制(管理) 机器学习 工程类 机械工程 哲学 认识论 操作系统
作者
Núria Banús,Imma Boada,Pau Xiberta,Pol Toldrà,Narcís Bustins
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:11 (1) 被引量:29
标识
DOI:10.1038/s41598-021-01254-x
摘要

Abstract Quality control is a key process designed to ensure that only products satisfying the defined quality requirements reach the end consumer or the next step in a production line. In the food industry, in the packaging step, there are many products that are still evaluated by human operators. To automate the process and improve efficiency and effectiveness, computer vision and artificial intelligence techniques can be applied. This automation is challenging since specific strategies designed according to the application scenario are required. Focusing on the quality control of the sealing and closure of matrix-shaped thermoforming food packages, the aim of the article is to propose a deep-learning-based solution designed to automatically perform the quality control while satisfying production cadence and ensuring 100% inline inspection of the products. Particularly, the designed computer vision system and the image-based criteria defined to determine when a product has to be accepted or rejected are presented. In addition, the vision control software is described with special emphasis on the different convolutional neural network (CNN) architectures that have been considered (ResNet18, ResNet50, Vgg19 and DenseNet161, non-pre-trained and pre-trained on ImageNet) and on the specifically designed dataset. To test the solution, different experiments are carried out in the laboratory and also in a real scenario, concluding that the proposed CNN-based approach improves the efficiency and security of the quality control process. Optimal results are obtained with the pre-trained DenseNet161, achieving false positive rates that range from 0.03 to 0.30% and false negative rates that range from 0 to 0.07%, with a rejection rate between 0.64 and 5.09% of production, and being able to detect at least 99.93% of the sealing defects that occur in any production. The modular design of our solution as well as the provided description allow it to adapt to similar scenarios and to new deep-learning models to prevent the arrival of faulty products to end consumers by removing them from the automated production line.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CC发布了新的文献求助10
15秒前
21秒前
24秒前
40秒前
量子星尘发布了新的文献求助10
40秒前
keyan123完成签到,获得积分10
41秒前
59秒前
酷波er应助科研通管家采纳,获得10
1分钟前
1分钟前
英姑应助sylnd126采纳,获得100
1分钟前
优美的明辉完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
sylnd126发布了新的文献求助100
2分钟前
2分钟前
2分钟前
2分钟前
孤独剑完成签到 ,获得积分10
2分钟前
2分钟前
丁元英完成签到,获得积分10
2分钟前
2分钟前
六一完成签到 ,获得积分10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
万能图书馆应助Perry采纳,获得10
3分钟前
3分钟前
怕黑的店员完成签到 ,获得积分10
3分钟前
Liufgui应助wuran采纳,获得30
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
Perry发布了新的文献求助10
3分钟前
4分钟前
4分钟前
4分钟前
kumo完成签到 ,获得积分10
4分钟前
jerry完成签到 ,获得积分10
4分钟前
教生物的杨教授完成签到,获得积分10
4分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
5分钟前
vbnn完成签到 ,获得积分10
5分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
徐淮辽南地区新元古代叠层石及生物地层 2000
A new approach to the extrapolation of accelerated life test data 1000
Exosomes from Umbilical Cord-Originated Mesenchymal Stem Cells (MSCs) Prevent and Treat Diabetic Nephropathy in Rats via Modulating the Wingless-Related Integration Site (Wnt)/β-Catenin Signal Transduction Pathway 500
Global Eyelash Assessment scale (GEA) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4029854
求助须知:如何正确求助?哪些是违规求助? 3568606
关于积分的说明 11356303
捐赠科研通 3299613
什么是DOI,文献DOI怎么找? 1816774
邀请新用户注册赠送积分活动 890931
科研通“疑难数据库(出版商)”最低求助积分说明 813943