Single-Objective/Multiobjective Cat Swarm Optimization Clustering Analysis for Data Partition

聚类分析 多目标优化 计算机科学 数据挖掘 群体行为 模拟退火 数学优化 人工智能 算法 机器学习 数学
作者
Dapeng Yan,Hui Cao,Yajie Yu,Yanxia Wang,Xiang Yu
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14 被引量:38
标识
DOI:10.1109/tase.2020.2969485
摘要

This article proposes single-objective/multiobjective cat swarm optimization clustering algorithms for data partition. The proposed methods use the cat swarm to search the optimal. The position of the cat tightly associates with the clustering centers and is updated by two submodes: the seeking mode and the tracing mode. The seeking mode uses the simulated annealing strategy to update the cat position at a probability. Inspired by the quantum theories, the tracing mode adopts the quantum model to update the cat position in the whole solution space. First, the single-objective method is proposed and adopts the cohesion of clustering as the objective function, in which the kernel method is applied. For considering more objective functions to reveal diverse aspects of data, the multiobjective method is proposed and adopts both the cohesion and the connectivity as the objective functions. The Pareto optimization method is applied to balance the objectives. In the experiments, three kinds of data sets are used to examine the effectiveness of the proposed methods, which are three synthetic data sets, four data sets from the UCI Machine Learning Repository, and a field data set. Experimental results verified that the proposed methods perform better than the traditional clustering algorithms, and the proposed multiobjective method has the highest accuracy. Note to Practitioners-This article presents single-objective/multiobjective cat swarm optimization clustering analysis methods for data partition. Through automatically extracting meaningful or useful classes, clustering analysis could help the practitioners or the intelligent devices find the specific meanings of data, natural data structure, the data relationships, or other characteristics. The proposed methods use the cat swarm to search the optimal clustering result. One or more criterion functions could be selected as the optimization objectives. The time complexity of the multiobjective type is higher than that of the single-objective type. Therefore, in the industrial field, engineers should choose the number of the optimization objectives based on the actual requirements. The proposed methods could be widely used into industrial applications to deal with complex data sets. Future research could consider some more progressive optimization schemes to improve the effectiveness.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助非凡采纳,获得10
刚刚
2秒前
2秒前
传奇3应助熊二浪采纳,获得10
2秒前
Marciu33发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
chang发布了新的文献求助10
4秒前
叉叉发布了新的文献求助10
5秒前
Lee完成签到,获得积分10
5秒前
11发布了新的文献求助10
6秒前
6秒前
冷傲曼荷发布了新的文献求助10
7秒前
荷包蛋发布了新的文献求助10
9秒前
Lc应助谢丹采纳,获得10
10秒前
10秒前
10秒前
10秒前
非凡发布了新的文献求助10
13秒前
13秒前
14秒前
14秒前
14秒前
现代雪晴发布了新的文献求助10
15秒前
15秒前
16秒前
ZR1995完成签到,获得积分10
17秒前
ZZ发布了新的文献求助10
18秒前
19秒前
自然的雁芙完成签到 ,获得积分10
20秒前
乐观道之完成签到,获得积分10
21秒前
21秒前
如约而至发布了新的文献求助10
21秒前
啦啦啦发布了新的文献求助10
22秒前
Ashley完成签到,获得积分10
22秒前
22秒前
一个舒发布了新的文献求助10
22秒前
所所应助11采纳,获得10
22秒前
Autaro发布了新的文献求助10
23秒前
聚砂成塔完成签到,获得积分10
23秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Composite Predicates in English 300
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3984777
求助须知:如何正确求助?哪些是违规求助? 3527987
关于积分的说明 11238627
捐赠科研通 3266307
什么是DOI,文献DOI怎么找? 1803279
邀请新用户注册赠送积分活动 880852
科研通“疑难数据库(出版商)”最低求助积分说明 808411