局部敏感散列
图像检索
计算机科学
散列函数
图像(数学)
地点
最近邻搜索
相似性(几何)
人工智能
编码(内存)
模式识别(心理学)
欧几里德距离
图像自动标注
比例(比率)
哈希表
情报检索
计算机视觉
量子力学
语言学
计算机安全
物理
哲学
作者
Prateek Singh,Shivam Prasad,Osho Agyeya
标识
DOI:10.1109/icict43934.2018.9034370
摘要
With the ever growing size of image databases today and the increasing demand for search and recommendations from within those databases, it is becoming more and more critical to find efficient image search techniques. This paper proposes a fast approach for extracting the most similar image to a given query image from a database such that the extracted images are most similar semantically. This involves reducing the dimensions of the images by encoding them uniquely to lower dimensional vector using CNN and then applying locality sensitive hashing along with euclidean distance similarity to find the most similar images.
科研通智能强力驱动
Strongly Powered by AbleSci AI