A Euclidean Distance based Super Resolution Method for Sub pixel target detection in Hyper Spectral Images

像素 亚像素渲染 高光谱成像 人工智能 图像分辨率 计算机科学 计算机视觉 模式识别(心理学) 欧几里德距离
作者
K. C. Tiwari,Amrita Bhandari
出处
期刊:GeoBit [Edupedia Publications]
卷期号:15 (2): 104-124 被引量:1
标识
DOI:10.26643/gis.v15i2.18901
摘要

Most target detection algorithms suffer from the limitation that they can detect only the full pixels of the target while the target may also reside, besides the full pixel, partially in several surrounding pixels. In some cases, the target may even be embedded completely within the pixel. Both these cases are known as subpixel target detection problem. Many target detection applications, however, require detection of full pixels as well as detection of subpixel targets in the surrounding pixels which constitute a case of the mixed pixel. The problem is addressed by full pixel detection followed by spectral unmixing to determine the abundance fraction of the target. Though spectral unmixing gives the abundance fractions, it still does not give the spatial distribution/ arrangement of subpixels of the target with the surrounding pixels. The process of optimizing the spatial distribution of subpixels inside any given pixel based on the available abundance fractions is known as super resolution. This paper investigates Inverse Euclidean distance based super resolution. The algorithm performs well at different scale factors both for synthetic and real hyperspectral data which can aid the super resolution process significantly and thereby enhance the identification and recognition of target. A comparative assessment is also performed with Pixel Swap algorithm.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
1秒前
执着瑛完成签到,获得积分10
2秒前
王认真完成签到,获得积分10
3秒前
圆圆发布了新的文献求助10
3秒前
hubo完成签到,获得积分10
3秒前
喜悦小猫咪完成签到,获得积分10
4秒前
善学以致用应助罗浩采纳,获得10
4秒前
mumufan完成签到,获得积分10
5秒前
五档张诊人完成签到,获得积分10
5秒前
石龙子发布了新的文献求助10
5秒前
WJN发布了新的文献求助10
5秒前
完美世界应助weiweiwu12采纳,获得10
5秒前
6秒前
6秒前
6秒前
7秒前
7秒前
幽默亦凝发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
乐观寻绿完成签到,获得积分10
8秒前
NexusExplorer应助快乐难敌采纳,获得10
8秒前
zhong完成签到,获得积分10
9秒前
白白发布了新的文献求助10
10秒前
10秒前
曾经的借过完成签到,获得积分10
10秒前
10秒前
李鹏飞发布了新的文献求助10
10秒前
11秒前
共渡发布了新的文献求助10
11秒前
11秒前
tangli发布了新的文献求助30
11秒前
彭于晏应助落寞砖家采纳,获得10
11秒前
vergegung完成签到,获得积分20
11秒前
ALLUDO发布了新的文献求助10
12秒前
12秒前
高分求助中
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Hardness Tests and Hardness Number Conversions 300
Knowledge management in the fashion industry 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816802
求助须知:如何正确求助?哪些是违规求助? 3360159
关于积分的说明 10407045
捐赠科研通 3078172
什么是DOI,文献DOI怎么找? 1690613
邀请新用户注册赠送积分活动 813964
科研通“疑难数据库(出版商)”最低求助积分说明 767910