Determination of the nutrient profile in plant materials using laser-induced breakdown spectroscopy with partial least squares-artificial neural network hybrid models

激光诱导击穿光谱 偏最小二乘回归 校准 材料科学 光谱学 分析化学(期刊) 吸收(声学) 定量分析(化学) 人工神经网络 生物系统 激光器 光学 化学 数学 计算机科学 色谱法 机器学习 物理 复合材料 统计 量子力学 生物
作者
Ping Yang,Xiangyou Li,Zhanglong Nie
出处
期刊:Optics Express [Optica Publishing Group]
卷期号:28 (15): 23037-23037 被引量:10
标识
DOI:10.1364/oe.399909
摘要

Nutrient profile determination for plant materials is an important task to determine the quality and safety of the human diet. Laser-induced breakdown spectroscopy (LIBS) is an atomic emission spectrometry of the material component analytical technique. However, quantitative analysis of plant materials using LIBS usually suffers from matrix effects and nonlinear self-absorption. To overcome this problem, a hybrid quantitative analysis model of the partial least squares-artificial neural network (PLS-ANN) was used to detect the compositions of plant materials in the air. Specifically, fifty-eight plant materials were prepared to split into calibration, validation and prediction sets. Nine nutrient composition profiles of Mg, Fe, N, Al, B, Ca, K, Mn, and P were employed as the target elements for quantitative analysis. It demonstrated that the prediction ability can be significantly improved by the use of the PLS-ANN hybrid model compared to the method of standard calibration. Take Mg and K as examples, the root-mean-square errors of calibration (RMSEC) of Mg and K were decreased from 0.0295 to 0.0028 wt.% and 0.2884 to 0.0539 wt.%, and the mean percent prediction errors (MPE) were decreased from 5.82 to 4.22% and 8.82 to 4.12%, respectively. This research provides a new way to improve the accuracy of LIBS for quantitative analysis of plant materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
粗犷的怜梦完成签到 ,获得积分10
1秒前
星辰大海发布了新的文献求助10
1秒前
1秒前
科研通AI5应助liang采纳,获得10
2秒前
搜集达人应助勤恳的越泽采纳,获得10
2秒前
3秒前
3秒前
3秒前
李健应助gao采纳,获得30
4秒前
4秒前
科研小白完成签到,获得积分10
4秒前
4秒前
4秒前
bing应助zxcv23采纳,获得10
5秒前
深情安青应助自由宛筠采纳,获得10
5秒前
打打应助蔺子凡采纳,获得10
5秒前
BBA完成签到 ,获得积分10
5秒前
自信羊发布了新的文献求助30
6秒前
13656479046发布了新的文献求助10
6秒前
从容仙人发布了新的文献求助10
7秒前
健忘的大象完成签到,获得积分20
7秒前
7秒前
kento发布了新的文献求助50
8秒前
cdercder应助123669采纳,获得30
8秒前
8秒前
晨屿发布了新的文献求助10
8秒前
念想发布了新的文献求助10
9秒前
CC1219应助科研通管家采纳,获得10
9秒前
彭于晏应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
赘婿应助科研通管家采纳,获得10
9秒前
Jasper应助科研通管家采纳,获得10
9秒前
所所应助科研通管家采纳,获得10
9秒前
田様应助科研通管家采纳,获得10
9秒前
FashionBoy应助Johnyang采纳,获得10
10秒前
打打应助丰丰采纳,获得20
10秒前
郑小七完成签到,获得积分10
10秒前
12秒前
天天之家完成签到,获得积分10
12秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3790460
求助须知:如何正确求助?哪些是违规求助? 3335150
关于积分的说明 10273529
捐赠科研通 3051578
什么是DOI,文献DOI怎么找? 1674737
邀请新用户注册赠送积分活动 802803
科研通“疑难数据库(出版商)”最低求助积分说明 760907