Statistical considerations for medication adherence research

逻辑回归 二项回归 医学 统计 统计能力 统计推断 计量经济学 有序逻辑 I类和II类错误 负二项分布 回归分析 统计模型 二项分布 回归 推论 序数回归 数学 计算机科学 人工智能 泊松分布
作者
Josh DeClercq,Leena Choi
出处
期刊:Current Medical Research and Opinion [Taylor & Francis]
卷期号:36 (9): 1549-1557 被引量:17
标识
DOI:10.1080/03007995.2020.1793312
摘要

Objective Medication non-adherence is a widespread problem and has been known to be associated with worse health outcomes and increased healthcare costs. Although many measures of adherence have been developed, their usage is not consistent across studies. Furthermore, statistical methods for analyzing adherence measures have not been rigorously evaluated.Methods Using Proportion of Days Covered (PDC), a commonly used adherence measure, we examine the variability inherent to study inclusion criteria and several variations of the PDC calculation method using a motivating data example. We illustrated via sensitivity analyses the potential for flawed inference when modeling PDC as an outcome measure. We also performed simulation studies to investigate the statistical properties of three statistical models: logistic regression, negative binomial, and ordinal logistic regression models.Results Our sensitivity analysis showed that parameter estimates can vary greatly depending on the rules for determining the study end date in calculating PDC, or the minimum number of fills in defining the cohort. In simulation studies, logistic regression had lower power than ordinal logistic and negative binomial regression models. Naivete to treatment was an important predictor of adherence and omitting it from statistical models can lead to inflated type I errors.Conclusions We discourage dichotomizing adherence data as it results in low power. The negative binomial model offers advantages in modeling adherence data, as it avoids the problematic use of a ratio in regression models. The ordinal logistic regression is robust to distributional assumptions with greater power, but naivete to treatment should be adjusted to reserve type I error rate. We also provide a recommendation for defining the observation window in calculating PDC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wx2360ouc完成签到 ,获得积分10
刚刚
刚刚
KeYang完成签到,获得积分10
1秒前
NexusExplorer应助LYJ采纳,获得10
2秒前
重要冰海完成签到,获得积分20
3秒前
WK-kin发布了新的文献求助10
4秒前
yoo完成签到,获得积分10
6秒前
Charles发布了新的文献求助10
6秒前
斯文败类应助球球采纳,获得10
6秒前
liuliu完成签到 ,获得积分10
7秒前
研友_Z3vemn完成签到,获得积分10
7秒前
Kittymiaoo完成签到,获得积分10
7秒前
迫切发布了新的文献求助10
7秒前
7秒前
9秒前
9秒前
星辰大海应助科研通管家采纳,获得30
10秒前
烟花应助科研通管家采纳,获得10
10秒前
慕青应助科研通管家采纳,获得30
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
传奇3应助科研通管家采纳,获得10
10秒前
在水一方应助科研通管家采纳,获得10
10秒前
乐乐应助科研通管家采纳,获得10
10秒前
10秒前
情怀应助科研通管家采纳,获得10
10秒前
烟花应助科研通管家采纳,获得10
10秒前
Alex应助科研通管家采纳,获得20
10秒前
10秒前
11秒前
我爱学习发布了新的文献求助10
12秒前
十一发布了新的文献求助10
12秒前
13秒前
13秒前
13秒前
斯文败类应助lk采纳,获得10
13秒前
周周南发布了新的文献求助10
14秒前
15秒前
王绪威完成签到,获得积分20
16秒前
16秒前
Qing完成签到,获得积分10
17秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Stereoelectronic Effects 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 840
Acylated delphinidin glucosides and flavonols from Clitoria ternatea 800
Logical form: From GB to Minimalism 500
Византийско-аланские отно- шения (VI–XII вв.) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4188023
求助须知:如何正确求助?哪些是违规求助? 3723948
关于积分的说明 11733830
捐赠科研通 3401286
什么是DOI,文献DOI怎么找? 1866474
邀请新用户注册赠送积分活动 923309
科研通“疑难数据库(出版商)”最低求助积分说明 834445