Engineering and Evolution of Methanol Assimilation inSaccharomyces cerevisiae

生物化学 酿酒酵母 酵母 发酵 代谢工程 甲醇 乙醛酸循环 化学 生物 新陈代谢 基因 有机化学
作者
Monica I. Espinosa,R. Axayácatl González-García,Kaspar Valgepea,Manuel R. Plan,Colin Scott,Isak S. Pretorius,Esteban Marcellin,Ian T. Paulsen,Thomas C. Williams
标识
DOI:10.1101/717942
摘要

Abstract Microbial fermentation for chemical production is becoming more broadly adopted as an alternative to petrochemical refining. Fermentation typically relies on sugar as a feedstock, however, one-carbon compounds like methanol are an attractive alternative as they can be derived from organic waste and natural gas. This study focused on engineering methanol assimilation in the yeast Saccharomyces cerevisiae. Three methanol assimilation pathways were engineered and tested: a synthetic xylulose monophosphate (XuMP), a ‘hybrid’ methanol dehydrogenase-XuMP, and a bacterial ribulose monophosphate (RuMP) pathway, with the latter identified as the most effective at assimilating methanol. Additionally, 13 C-methanol tracer analysis uncovered a native capacity for methanol assimilation in S. cerevisiae , which was optimized using Adaptive Laboratory Evolution. Three independent lineages selected in liquid methanol-yeast extract medium evolved premature stop codons in YGR067C , which encodes an uncharacterised protein that has a predicted DNA-binding domain with homology to the ADR1 transcriptional regulator. Adr1p regulates genes involved in ethanol metabolism and peroxisomal proliferation, suggesting YGR067C has a related function. When one of the evolved YGR067C mutations was reverse engineered into the parental CEN.PK113-5D strain, there were up to 5-fold increases in 13 C-labelling of intracellular metabolites from 13 C-labelled methanol when 0.1 % yeast extract was a co-substrate, and a 44 % increase in final biomass. Transcriptomics and proteomics revealed that the reconstructed YGR067C mutation results in down-regulation of genes in the TCA cycle, glyoxylate cycle, and gluconeogenesis, which would normally be up-regulated during growth on a non-fermentable carbon source. Combining the synthetic RuMP and XuMP pathways with the reconstructed Ygr067cp truncation led to further improvements in growth. These results identify a latent methylotrophic metabolism in S. cerevisiae and pave the way for further development of native and synthetic one-carbon assimilation pathways in this model eukaryote.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jinzhen完成签到,获得积分10
刚刚
zzzzz完成签到,获得积分10
1秒前
罗伯特骚塞完成签到,获得积分10
1秒前
2秒前
jinzhen发布了新的文献求助10
3秒前
4秒前
蓝色芒果发布了新的文献求助10
6秒前
杨师傅完成签到 ,获得积分10
10秒前
泡泡啰叽完成签到,获得积分10
13秒前
14秒前
畅快的忆丹完成签到,获得积分10
14秒前
小五完成签到 ,获得积分10
16秒前
16秒前
科研通AI5应助Zxj采纳,获得10
16秒前
iehaoang完成签到 ,获得积分10
17秒前
852应助科研通管家采纳,获得10
19秒前
chiaoyin999应助科研通管家采纳,获得10
19秒前
19秒前
20秒前
qiao应助繁荣的又夏采纳,获得10
22秒前
凤兮完成签到 ,获得积分10
27秒前
31秒前
38秒前
内向映天完成签到 ,获得积分10
42秒前
蓝色芒果完成签到,获得积分10
42秒前
阔达东蒽发布了新的文献求助10
45秒前
福荔完成签到 ,获得积分10
49秒前
李健应助小兔子采纳,获得10
52秒前
54秒前
1分钟前
1分钟前
Jasper应助称心寒松采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
rad1413完成签到 ,获得积分10
1分钟前
qiao应助心灵美小懒猪采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781306
求助须知:如何正确求助?哪些是违规求助? 3326832
关于积分的说明 10228424
捐赠科研通 3041839
什么是DOI,文献DOI怎么找? 1669591
邀请新用户注册赠送积分活动 799153
科研通“疑难数据库(出版商)”最低求助积分说明 758751