Learning Markets: An AI Collaboration Framework Based on Blockchain and Smart Contracts

计算机科学 可扩展性 可追溯性 块链 透明度(行为) 智能合约 数据库事务 权力下放 分布式计算 人工智能 计算机安全 软件工程 数据库 政治学 法学
作者
Liwei Ouyang,Yong Yuan,Fei‐Yue Wang
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:9 (16): 14273-14286 被引量:41
标识
DOI:10.1109/jiot.2020.3032706
摘要

Artificial intelligence (AI) has been witnessed to provide valuable solutions to all walks of life. However, data island and computing resources limitations in the centralized AI architectures have increased their technical barriers, and thus distributed AI collaboration in data, models, and resources has attracted intensive research interests. Since the existing trust-based collaboration models are no longer applicable for the large-scale distributed collaboration among trustless machines in open and dynamic environments, this article proposes a novel decentralized AI collaboration framework, i.e., learning markets (LM), in which blockchain provides a trustless environment for collaboration and transaction, while smart contracts serve as software-defined agents to encapsulate and process scalable collaboration relationships and market mechanisms. LM can not only help those participants without mutual trust realize collaborative mining with dynamic and quantitative rewards but also build an AI market with natural auditability and traceability for trading trusted and verified models. We implement and comprehensively analyze LM based on the Ethereum interplenary file system platform (IPFS), and the results prove that it has advantages in collaboration fairness, transparency, security, decentralization and universality. Based on our collaboration framework, distributed AI contributors are expected to cooperate and complete those learning tasks that cannot be done previously due to lack of complete data, sufficient computing resources and state-of-the-art models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
111完成签到 ,获得积分10
2秒前
刘搞笑发布了新的文献求助10
4秒前
5秒前
林溪完成签到,获得积分10
7秒前
LJM完成签到,获得积分10
9秒前
高圆圆完成签到,获得积分10
9秒前
HEIKU应助纪鹏飞采纳,获得10
15秒前
Xu关注了科研通微信公众号
17秒前
18秒前
东邪西毒加任我行完成签到,获得积分10
20秒前
bc应助rrrrroxie采纳,获得40
21秒前
Sunshine完成签到,获得积分10
22秒前
领导范儿应助科研通管家采纳,获得10
22秒前
22秒前
22秒前
CipherSage应助刘搞笑采纳,获得10
23秒前
24秒前
Aries完成签到 ,获得积分10
28秒前
犹豫紫丝发布了新的文献求助10
33秒前
33秒前
34秒前
34秒前
tier3完成签到,获得积分10
35秒前
35秒前
我以為忘了想念完成签到 ,获得积分10
36秒前
helly完成签到,获得积分10
37秒前
37秒前
38秒前
ariaooo完成签到,获得积分10
39秒前
39秒前
40秒前
liu发布了新的文献求助10
41秒前
科研通AI2S应助默默忆山采纳,获得10
44秒前
sure发布了新的文献求助10
44秒前
Orange应助liu采纳,获得10
45秒前
奋斗的荆发布了新的文献求助10
46秒前
zjw发布了新的文献求助10
46秒前
顺利的丹妗完成签到,获得积分10
48秒前
LWJ完成签到 ,获得积分10
53秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778778
求助须知:如何正确求助?哪些是违规求助? 3324341
关于积分的说明 10217992
捐赠科研通 3039436
什么是DOI,文献DOI怎么找? 1668089
邀请新用户注册赠送积分活动 798545
科研通“疑难数据库(出版商)”最低求助积分说明 758415