清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Preoperative CT-based Deep Learning Model for Predicting Disease-Free Survival in Patients with Lung Adenocarcinomas

医学 疾病 放射科 腺癌 内科学 肿瘤科 癌症
作者
Hyungjin Kim,Jin Mo Goo,Kyung Hee Lee,Young Tae Kim,Chang Min Park
出处
期刊:Radiology [Radiological Society of North America]
卷期号:296 (1): 216-224 被引量:110
标识
DOI:10.1148/radiol.2020192764
摘要

Background Deep learning models have the potential for lung cancer prognostication, but model output as an independent prognostic factor must be validated with clinical risk factors. Purpose To develop and validate a preoperative CT-based deep learning model for predicting disease-free survival in patients with lung adenocarcinoma. Materials and Methods In this retrospective study, a deep learning model was trained to extract prognostic information from preoperative CT examinations. Data set 1 for training, tuning, and internal validation consisted of patients with T1-4N0M0 adenocarcinoma resected between 2009 and 2015. Data set 2 for external validation included patients with clinical T1-2aN0M0 (stage I) adenocarcinomas resected in 2014. Discrimination was assessed by using Harrell C index and benchmarked against the clinical T category. The Greenwood-Nam-D'Agostino test was used for model calibration. The multivariable-adjusted hazard ratios (HRs) were analyzed with clinical prognostic factors by using the Cox regression. Results Evaluated were 800 patients (median age, 64 years; interquartile range, 56-70 years; 450 women) in data set 1 and 108 patients (median age, 63 years; interquartile range, 57-71 years; 60 women) in data set 2. The C indexes were 0.74-0.80 in the internal validation and 0.71-0.78 in the external validation, both comparable with the clinical T category (0.78 in the internal validation and 0.74 in the external validation; all P > .05). The model exhibited good calibration in all data sets (P > .05). Multivariable Cox regression revealed that model outputs were independent prognostic factors (hazard ratio [HR] of the categorical output, 2.5 [95% confidence interval {CI}: 1.03, 5.9; P = .04] in the internal validation and 3.6 [95% CI: 1.6, 8.5; P = .003] in the external validation). Other than the deep learning model, only smoking status (HR, 3.4; 95% CI: 1.4, 8.5; P = .007) contributed further to prediction of disease-free survival for patients after resection of clinical stage I adenocarcinomas. Conclusion A deep learning model for chest CT predicted disease-free survival for patients undergoing an operation for clinical stage I lung adenocarcinoma. © RSNA, 2020 Online supplemental material is available for this article. See also the editorial by Shaffer in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
钉钉完成签到 ,获得积分10
14秒前
45秒前
Skywings完成签到,获得积分10
46秒前
悄悄拔尖儿完成签到 ,获得积分10
1分钟前
呆呆的猕猴桃完成签到 ,获得积分10
2分钟前
我是笨蛋完成签到 ,获得积分10
2分钟前
2分钟前
研友_nxw2xL完成签到,获得积分10
2分钟前
muriel完成签到,获得积分10
2分钟前
4分钟前
naczx完成签到,获得积分0
5分钟前
SDNUDRUG完成签到,获得积分10
5分钟前
5分钟前
poki完成签到 ,获得积分10
6分钟前
6分钟前
南瓜猪猪头完成签到 ,获得积分10
8分钟前
杪夏二八完成签到 ,获得积分10
8分钟前
天天快乐应助ChenWei采纳,获得10
8分钟前
marco发布了新的文献求助10
9分钟前
情怀应助marco采纳,获得10
9分钟前
9分钟前
ChenWei发布了新的文献求助10
9分钟前
传奇3应助ChenWei采纳,获得10
10分钟前
beloved完成签到 ,获得积分10
10分钟前
科研通AI5应助仁爱保温杯采纳,获得10
10分钟前
10分钟前
10分钟前
JamesPei应助科研通管家采纳,获得10
10分钟前
星际舟完成签到,获得积分10
11分钟前
紫熊发布了新的文献求助30
11分钟前
方白秋完成签到,获得积分10
11分钟前
11分钟前
田様应助Mine采纳,获得10
12分钟前
紫熊发布了新的文献求助10
12分钟前
12分钟前
12分钟前
wangye完成签到 ,获得积分10
13分钟前
13分钟前
13分钟前
13分钟前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
材料概论 周达飞 ppt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3808127
求助须知:如何正确求助?哪些是违规求助? 3352735
关于积分的说明 10360201
捐赠科研通 3068739
什么是DOI,文献DOI怎么找? 1685251
邀请新用户注册赠送积分活动 810367
科研通“疑难数据库(出版商)”最低求助积分说明 766058