已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Matrix Factorization-based Technique for Drug Repurposing Predictions

药物重新定位 计算机科学 杠杆(统计) 矩阵分解 药物发现 药品 机器学习 数据挖掘 药物开发 人工智能 生物信息学 医学 药理学 生物 物理 量子力学 特征向量
作者
Gaia Ceddia,Pietro Pinoli,Stefano Ceri,Marco Masseroli
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:24 (11): 3162-3172 被引量:41
标识
DOI:10.1109/jbhi.2020.2991763
摘要

Classical drug design methodologies are hugely costly and time-consuming, with approximately 85% of the new proposed molecules failing in the first three phases of the FDA drug approval process. Thus, strategies to find alternative indications for already approved drugs that leverage computational methods are of crucial relevance. We previously demonstrated the efficacy of the Non-negative Matrix Tri-Factorization, a method that allows exploiting both data integration and machine learning, to infer novel indications for approved drugs. In this work, we present an innovative enhancement of the NMTF method that consists of a shortest-path evaluation of drug-protein pairs using the protein-to-protein interaction network. This approach allows inferring novel protein targets that were never considered as drug targets before, increasing the information fed to the NMTF method. Indeed, this novel advance enables the investigation of drug-centric predictions, simultaneously identifying therapeutic classes, protein targets and diseases associated with a particular drug. To test our methodology, we applied the NMTF and shortest-path enhancement methods to an outdated collection of data and compared the predictions against the most updated version, obtaining very good performance, with an Average Precision Score of 0.82. The data enhancement strategy allowed increasing the number of putative protein targets from 3,691 to 15,295, while the predictive performance of the method is slightly increased. Finally, we also validated our top-scored predictions according to the literature, finding relevant confirmation of predicted interactions between drugs and protein targets, as well as of predicted annotations between drugs and both therapeutic classes and diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
7秒前
11秒前
12秒前
丁丁丁完成签到,获得积分10
12秒前
14秒前
18秒前
zouyiming完成签到 ,获得积分10
19秒前
MMMMM给muxc的求助进行了留言
19秒前
共享精神应助你不管嘛采纳,获得10
19秒前
jihenyouai0213完成签到,获得积分10
21秒前
22秒前
22秒前
猪猪侠发布了新的文献求助10
22秒前
24秒前
兴奋白枫发布了新的文献求助10
29秒前
量子星尘发布了新的文献求助10
29秒前
红汤加煎蛋完成签到,获得积分10
31秒前
wackykao完成签到 ,获得积分10
33秒前
万能图书馆应助兴奋白枫采纳,获得10
36秒前
43秒前
macboy完成签到,获得积分10
44秒前
45秒前
彭洪凯完成签到,获得积分10
50秒前
不想干活应助友好的小萱采纳,获得10
51秒前
狂野的含烟完成签到 ,获得积分10
51秒前
koko完成签到,获得积分10
51秒前
枝枝江发布了新的文献求助10
52秒前
55秒前
平淡的雁开完成签到 ,获得积分10
55秒前
lx840518完成签到 ,获得积分10
57秒前
wanci应助钮卿采纳,获得10
57秒前
57秒前
SLime发布了新的文献求助10
59秒前
1分钟前
情怀应助枝枝江采纳,获得10
1分钟前
善学以致用应助枝枝江采纳,获得10
1分钟前
辽宁科技大学完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Stereoelectronic Effects 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 900
Principles of Plasma Discharges and Materials Processing,3rd Edition 500
Atlas of Quartz Sand Surface Textures 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4209953
求助须知:如何正确求助?哪些是违规求助? 3743834
关于积分的说明 11784599
捐赠科研通 3413538
什么是DOI,文献DOI怎么找? 1873156
邀请新用户注册赠送积分活动 927681
科研通“疑难数据库(出版商)”最低求助积分说明 837172