Multi-scaled identification of landscape character types and areas in Lushan National Park and its fringes, China

光栅图形 鉴定(生物学) 可视化 地理 比例(比率) 土地覆盖 软件 环境资源管理 地图学 计算机科学 土地利用 遥感 数据挖掘 生态学 环境科学 人工智能 程序设计语言 生物
作者
Diechuan Yang,Gao Chi,Luyuan Li,Veerle Van Eetvelde
出处
期刊:Landscape and Urban Planning [Elsevier BV]
卷期号:201: 103844-103844 被引量:50
标识
DOI:10.1016/j.landurbplan.2020.103844
摘要

China's national parks adopt a resource-oriented protection and planning approach that cannot restrain the continuous landscape fragmentation and deterioration, whereas, we propose to characterise the landscape in order to protect its integrity. This paper described a hierarchical identification of landscape character types and areas in Lushan National Park and its fringes according to a refined combination of the parametric and the holistic methods in a multiscalar approach. In terms of the functional hierarchy of landscape character, we decided to order the available data sources in 'downscaling'. At the broad scale, landscape typologies were delimited by raster datasets of four natural attributes: land cover, soil, vegetation, and altitude. At the intermediate scale, landscape typologies were determined by raster datasets of six natural and cultural attributes: aspect, slope, relief amplitude, heritage density, geology and land use. At these two scales, we adopted the principal component analysis (PCA) and two-step cluster analysis in SPSS software to visualise landscape types, to modify and integrate the results obtained in the eCognition software, as well as to rectify the visualisation with manual identifications. At the detailed scale, landscape typologies were demarcated by two raster and one vector datasets of cultural attributes: building density, visual influence and time depth. We performed the visualisation and integration with a similar method except for the PCA step. This multi-scaled identification will provide a nested framework facilitating the integration of the broad Lushan region in both spatial and administrative dimensions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助郑大小神龙采纳,获得10
刚刚
不呆发布了新的文献求助20
1秒前
2秒前
哈里鹿呀发布了新的文献求助10
2秒前
2秒前
大模型应助mmy采纳,获得10
3秒前
星辰大海应助开放觅夏采纳,获得10
3秒前
ty发布了新的文献求助10
4秒前
爱笑的鹿发布了新的文献求助10
4秒前
4秒前
Timezzz发布了新的文献求助30
5秒前
研友_ZzrwqZ发布了新的文献求助10
5秒前
想毕业完成签到,获得积分10
6秒前
6秒前
曾蕙茹关注了科研通微信公众号
6秒前
龙欣完成签到,获得积分10
7秒前
7秒前
peace发布了新的文献求助30
7秒前
所所应助生动友绿采纳,获得10
8秒前
8秒前
donal发布了新的文献求助10
9秒前
MutantKitten完成签到,获得积分10
9秒前
10秒前
HEANZ完成签到,获得积分10
10秒前
哈里鹿呀完成签到,获得积分10
10秒前
10秒前
11秒前
爱笑的鹿完成签到,获得积分10
11秒前
11秒前
11秒前
小门发布了新的文献求助10
11秒前
wanci应助一篇吃不饱采纳,获得10
11秒前
ATTENTION完成签到,获得积分10
14秒前
15秒前
15秒前
LongH2完成签到,获得积分10
15秒前
Kessenn发布了新的文献求助10
16秒前
16秒前
MutantKitten发布了新的文献求助10
16秒前
16秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
Materials for Green Hydrogen Production 2026-2036: Technologies, Players, Forecasts 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4052572
求助须知:如何正确求助?哪些是违规求助? 3590869
关于积分的说明 11411535
捐赠科研通 3317165
什么是DOI,文献DOI怎么找? 1824571
邀请新用户注册赠送积分活动 896170
科研通“疑难数据库(出版商)”最低求助积分说明 817311