Human-level recognition of blast cells in acute myeloid leukaemia with convolutional neural networks

髓性白血病 卷积神经网络 前体细胞 爆炸危机 计算机科学 人工智能 髓样 医学 免疫学 生物 遗传学 细胞
作者
Christian Matek,Simone Schwarz,Karsten Spiekermann,Carsten Marr
出处
期刊:Nature Machine Intelligence [Nature Portfolio]
卷期号:1 (11): 538-544 被引量:192
标识
DOI:10.1038/s42256-019-0101-9
摘要

Reliable recognition of malignant white blood cells is a key step in the diagnosis of haematologic malignancies such as acute myeloid leukaemia. Microscopic morphological examination of blood cells is usually performed by trained human examiners, making the process tedious, time-consuming and hard to standardize. Here, we compile an annotated image dataset of over 18,000 white blood cells, use it to train a convolutional neural network for leukocyte classification and evaluate the network’s performance by comparing to inter- and intra-expert variability. The network classifies the most important cell types with high accuracy. It also allows us to decide two clinically relevant questions with human-level performance: (1) if a given cell has blast character and (2) if it belongs to the cell types normally present in non-pathological blood smears. Our approach holds the potential to be used as a classification aid for examining much larger numbers of cells in a smear than can usually be done by a human expert. This will allow clinicians to recognize malignant cell populations with lower prevalence at an earlier stage of the disease. Deep learning is currently transforming digital pathology, helping to make more reliable and faster clinical diagnoses. A promising application is in the recognition of malignant white blood cells—an essential step for detecting acute myeloid leukaemia that is challenging even for trained human examiners. An annotated image dataset of over 18,000 white blood cells is compiled and used to train a convolutional neural network for leukocyte classification. The network classifies the most important cell types with high accuracy and can answer clinically relevant binary questions with human-level performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助顺心牛排采纳,获得10
刚刚
冷傲迎梦发布了新的文献求助10
1秒前
小橙子完成签到 ,获得积分10
1秒前
2秒前
7秒前
7秒前
临诗发布了新的文献求助10
7秒前
Ms_Galaxea完成签到,获得积分10
10秒前
11秒前
柒柒完成签到,获得积分10
12秒前
科研通AI5应助我是楠个谁采纳,获得10
15秒前
xiaopan9083发布了新的文献求助10
17秒前
17秒前
Zz完成签到,获得积分10
19秒前
20秒前
三三四完成签到,获得积分10
21秒前
淡然靖柔发布了新的文献求助10
23秒前
情怀应助爱听歌笑寒采纳,获得10
24秒前
25秒前
完美世界应助长情的昊焱采纳,获得10
27秒前
大个应助科研通管家采纳,获得10
27秒前
归尘应助科研通管家采纳,获得10
27秒前
归尘应助科研通管家采纳,获得10
28秒前
归尘应助科研通管家采纳,获得10
28秒前
完美世界应助科研通管家采纳,获得10
28秒前
28秒前
归尘应助科研通管家采纳,获得10
28秒前
归尘应助科研通管家采纳,获得10
28秒前
归尘应助科研通管家采纳,获得10
28秒前
bc应助科研通管家采纳,获得30
28秒前
归尘应助科研通管家采纳,获得10
28秒前
归尘应助科研通管家采纳,获得10
28秒前
归尘应助科研通管家采纳,获得10
28秒前
归尘应助科研通管家采纳,获得10
28秒前
烟花应助科研通管家采纳,获得10
28秒前
归尘应助科研通管家采纳,获得10
28秒前
29秒前
xiaopan9083完成签到,获得积分10
29秒前
个性的紫菜应助临诗采纳,获得50
30秒前
Cherry发布了新的文献求助10
33秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778595
求助须知:如何正确求助?哪些是违规求助? 3324214
关于积分的说明 10217326
捐赠科研通 3039397
什么是DOI,文献DOI怎么找? 1668059
邀请新用户注册赠送积分活动 798482
科研通“疑难数据库(出版商)”最低求助积分说明 758385