Overcoming the Reticuloendothelial System Barrier to Drug Delivery with a “Don’t-Eat-Us” Strategy

脂质体 单核吞噬细胞系统 药物输送 抗体调理 药品 吞噬细胞 内化 毒品携带者 药理学 材料科学 医学 化学 生物物理学 吞噬作用 纳米技术 免疫学 受体 生物化学 生物 调理素
作者
Yixuan Tang,Xiaoyou Wang,Jie Li,Yu Nie,Guojian Liao,Yang Yu,Chong Li
出处
期刊:ACS Nano [American Chemical Society]
卷期号:13 (11): 13015-13026 被引量:255
标识
DOI:10.1021/acsnano.9b05679
摘要

Overcoming the reticuloendothelial system (RES) has long been a vital challenge to nanoparticles as drug carriers. Modification of nanoparticles with polyethylene glycol helps them avoid clearance by macrophages but also suppresses their internalization by target cells. To overcome this paradox, we developed an RES-specific blocking system utilizing a "don't-eat-us" strategy. First, a CD47-derived, enzyme-resistant peptide ligand was designed and placed on liposomes (d-self-peptide-labeled liposome, DSL). After mainline administration, DSL was quickly adsorbed onto hepatic phagocyte membranes (including those of Kupffer cells and liver sinusoidal endothelial cells), forming a long-lasting mask that enclosed the cell membranes and thus reducing interactions between phagocytes and subsequently injected nanoparticles. Compared with blank conventional liposomes (CL), DSL blocked the RES at a much lower dose, and the effect was sustained for a much longer time, highly prolonging the elimination half-life of the subsequently injected nanoparticles. This "don't-eat-us" strategy by DSL was further verified on the brain-targeted delivery against a cryptococcal meningitis model, providing dramatically enhanced brain accumulation of the targeted delivery system and superior therapeutic outcome of model drug Amphotericin B compared with CL. Our study demonstrates a strategy that blocks the RES by masking phagocyte surfaces to prolong nanoparticle circulation time without excess modification and illustrates its utility in enhancing nanoparticle delivery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xinxinbaby发布了新的文献求助10
2秒前
3秒前
pluto应助kobner采纳,获得10
3秒前
飞羽完成签到,获得积分10
4秒前
可爱的函函应助ziyue采纳,获得10
4秒前
风清扬应助guozizi采纳,获得10
4秒前
小张小张完成签到,获得积分20
6秒前
7秒前
7秒前
8秒前
风清扬应助x蝎子柰柰采纳,获得10
9秒前
rainiee发布了新的文献求助10
10秒前
敏静发布了新的文献求助10
11秒前
小宋发布了新的文献求助10
11秒前
11秒前
huhu发布了新的文献求助10
12秒前
13秒前
无聊的万天完成签到,获得积分10
14秒前
一路向南完成签到 ,获得积分10
15秒前
15秒前
15秒前
16秒前
STZ完成签到,获得积分10
16秒前
brucelin发布了新的文献求助10
17秒前
852应助1111采纳,获得10
17秒前
韭菜发布了新的文献求助30
20秒前
20秒前
琪琪的完成签到,获得积分10
22秒前
Tony完成签到,获得积分10
22秒前
23秒前
23秒前
平常的毛豆应助biye采纳,获得10
23秒前
23秒前
26秒前
26秒前
量子星尘发布了新的文献求助10
26秒前
27秒前
柯语雪完成签到 ,获得积分10
27秒前
十一完成签到,获得积分10
27秒前
susu307发布了新的文献求助10
28秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Learning to Listen, Listening to Learn 520
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3867412
求助须知:如何正确求助?哪些是违规求助? 3409750
关于积分的说明 10664834
捐赠科研通 3133968
什么是DOI,文献DOI怎么找? 1728716
邀请新用户注册赠送积分活动 833058
科研通“疑难数据库(出版商)”最低求助积分说明 780550