位置和动量空间
波函数
动量(技术分析)
高斯分布
空格(标点符号)
物理
职位(财务)
密度矩阵
福克空间
傅里叶变换
奇点
基础(线性代数)
基函数
经典力学
量子力学
数学分析
量子
数学
计算机科学
操作系统
经济
财务
几何学
作者
Jorge Navaza,G. Tsoucaris
出处
期刊:Physical review
日期:1981-08-01
卷期号:24 (2): 683-692
被引量:46
标识
DOI:10.1103/physreva.24.683
摘要
Momentum-space calculations exhibit two kinds of advantages over position space: First, the numerical solution of Hartree-Fock equation is feasible without expansion of the wave functions in a particular basis. Equations only exhibit one avoidable singularity even for the multicenter case. Several mathematical techniques are presented, including standard fast Fourier-transform (FFT) techniques and numerical calculation of the involved convolutions. Second, momentum representation contributes in an original way to a better understanding of several physical problems arising in quantum chemistry. The two-body density matrix involving the electronic correlation are examined in both position and momentum space. If an expansion in Gaussian functions is used, momentum space renders feasible the obtainment of a multidimensional fully correlated wave function, starting from the Hartree-Fock solution.
科研通智能强力驱动
Strongly Powered by AbleSci AI