一般化
数学
扩展(谓词逻辑)
流行病模型
有界函数
非线性系统
理论(学习稳定性)
应用数学
饱和(图论)
期限(时间)
计算机科学
数学分析
组合数学
人口
人口学
物理
量子力学
机器学习
程序设计语言
社会学
作者
Vincenzo Capasso,Gabriella Serio
标识
DOI:10.1016/0025-5564(78)90006-8
摘要
In this paper the Kermack-McKendrick deterministic model is generalized, introducing an interaction term in which the dependence upon the number of infectives occurs via a nonlinear bounded function which may take into account saturation phenomena for large numbers of infectives. An extension of the well-known threshold theorem is obtained, after a stability analysis of the equilibrium points of the system. A numerical example is carried out in detail.
科研通智能强力驱动
Strongly Powered by AbleSci AI