甲酸
化学
格式化
碳酸氢盐
甲醇
生物化学
毒性
代谢性酸中毒
新陈代谢
内分泌学
有机化学
生物
催化作用
作者
Jyrki Liesivuori,And Heikki Savolainen
出处
期刊:Pharmacology & Toxicology
[Wiley]
日期:1991-09-01
卷期号:69 (3): 157-163
被引量:369
标识
DOI:10.1111/j.1600-0773.1991.tb01290.x
摘要
Abstract: Metabolism of methanol, methyl ethers, esters and amides give rise to formic acid. This acid is an inhibitor of the mitochondrial cytochrome oxidase causing histotoxic hypoxia. Formic acid is a weaker inhibitor than cyanide and hydrosulphide anions. The body burden of formate in methanol poisoning is high enough to cause acidosis, and other clinical symptoms. Part of the protons can be attributed to formic acid whereas the most significant acid load results from the hypoxic metabolism. The acidosis causes e.g. dilatation of cerebral vessels, facilitation of the entry of calcium ions into cells, loss of lysosomal latency and deranged production of ATP. The latter effect seems to impede parathormone‐dependent calcium reabsorption in the kidney tubules. Besides, urinary acidification is affected by formic acid. Its excretion causes continuous recycling of the acid by the tubular cell Cl − /formate exchanger. This sequence of events may partially explain an accumulation of formate in urine. Occupational exposure to vapours of methanol and formic acid can be quantitatively monitored by urinary formic acid determinations. Formic acid toxicity may prove a suitable model for agents causing histotoxic hypoxia.
科研通智能强力驱动
Strongly Powered by AbleSci AI