清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Reinforcement learning for demand response: A review of algorithms and modeling techniques

需求响应 强化学习 智能电网 峰值需求 灵活性(工程) 计算机科学 需求模式 暖通空调 需求管理 激励 可再生能源 网格 环境经济学 风险分析(工程) 空调 工程类 经济 人工智能 业务 微观经济学 电气工程 几何学 管理 宏观经济学 数学 机械工程
作者
José R. Vázquez-Canteli,Zoltán Nagy
出处
期刊:Applied Energy [Elsevier BV]
卷期号:235: 1072-1089 被引量:422
标识
DOI:10.1016/j.apenergy.2018.11.002
摘要

Buildings account for about 40% of the global energy consumption. Renewable energy resources are one possibility to mitigate the dependence of residential buildings on the electrical grid. However, their integration into the existing grid infrastructure must be done carefully to avoid instability, and guarantee availability and security of supply. Demand response, or demand-side management, improves grid stability by increasing demand flexibility, and shifts peak demand towards periods of peak renewable energy generation by providing consumers with economic incentives. This paper reviews the use of reinforcement learning, a machine learning algorithm, for demand response applications in the smart grid. Reinforcement learning has been utilized to control diverse energy systems such as electric vehicles, heating ventilation and air conditioning (HVAC) systems, smart appliances, or batteries. The future of demand response greatly depends on its ability to prevent consumer discomfort and integrate human feedback into the control loop. Reinforcement learning is a potentially model-free algorithm that can adapt to its environment, as well as to human preferences by directly integrating user feedback into its control logic. Our review shows that, although many papers consider human comfort and satisfaction, most of them focus on single-agent systems with demand-independent electricity prices and a stationary environment. However, when electricity prices are modelled as demand-dependent variables, there is a risk of shifting the peak demand rather than shaving it. We identify a need to further explore reinforcement learning to coordinate multi-agent systems that can participate in demand response programs under demand-dependent electricity prices. Finally, we discuss directions for future research, e.g., quantifying how RL could adapt to changing urban conditions such as building refurbishment and urban or population growth.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
樊尔风完成签到,获得积分10
1秒前
中西西完成签到 ,获得积分10
8秒前
ding应助科研通管家采纳,获得10
9秒前
贰鸟应助科研通管家采纳,获得10
9秒前
9秒前
贰鸟应助科研通管家采纳,获得10
10秒前
贰鸟应助科研通管家采纳,获得10
10秒前
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
贰鸟应助科研通管家采纳,获得10
10秒前
10秒前
贰鸟应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
Sunny完成签到,获得积分10
12秒前
科研通AI2S应助iwsaml采纳,获得10
18秒前
YAN完成签到 ,获得积分10
27秒前
SUNNYONE完成签到 ,获得积分10
35秒前
量子星尘发布了新的文献求助10
42秒前
CAOHOU应助Kevin采纳,获得10
50秒前
帅气的沧海完成签到 ,获得积分10
56秒前
隐形曼青应助黄辉冯采纳,获得10
1分钟前
1分钟前
whuhustwit完成签到,获得积分10
1分钟前
黄辉冯发布了新的文献求助10
1分钟前
like完成签到 ,获得积分10
1分钟前
少年完成签到 ,获得积分10
1分钟前
笨笨书芹完成签到 ,获得积分10
1分钟前
寒冷的煜祺完成签到,获得积分10
1分钟前
1分钟前
1分钟前
黄辉冯发布了新的文献求助10
1分钟前
贰鸟应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
贰鸟应助科研通管家采纳,获得10
2分钟前
2分钟前
Akim应助科研通管家采纳,获得10
2分钟前
余慵慵完成签到 ,获得积分10
2分钟前
研友_LJGXgn完成签到,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
tyro完成签到,获得积分10
3分钟前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Conjugated Polymers: Synthesis & Design 400
Picture Books with Same-sex Parented Families: Unintentional Censorship 380
Metals, Minerals, and Society 300
変形菌ミクソヴァース 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4256630
求助须知:如何正确求助?哪些是违规求助? 3789070
关于积分的说明 11888918
捐赠科研通 3438529
什么是DOI,文献DOI怎么找? 1886913
邀请新用户注册赠送积分活动 938111
科研通“疑难数据库(出版商)”最低求助积分说明 843716