已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Reinforcement learning for demand response: A review of algorithms and modeling techniques

需求响应 强化学习 智能电网 峰值需求 灵活性(工程) 计算机科学 需求模式 暖通空调 需求管理 激励 可再生能源 网格 环境经济学 风险分析(工程) 空调 工程类 经济 人工智能 业务 微观经济学 电气工程 几何学 管理 宏观经济学 数学 机械工程
作者
José R. Vázquez-Canteli,Zoltán Nagy
出处
期刊:Applied Energy [Elsevier BV]
卷期号:235: 1072-1089 被引量:422
标识
DOI:10.1016/j.apenergy.2018.11.002
摘要

Buildings account for about 40% of the global energy consumption. Renewable energy resources are one possibility to mitigate the dependence of residential buildings on the electrical grid. However, their integration into the existing grid infrastructure must be done carefully to avoid instability, and guarantee availability and security of supply. Demand response, or demand-side management, improves grid stability by increasing demand flexibility, and shifts peak demand towards periods of peak renewable energy generation by providing consumers with economic incentives. This paper reviews the use of reinforcement learning, a machine learning algorithm, for demand response applications in the smart grid. Reinforcement learning has been utilized to control diverse energy systems such as electric vehicles, heating ventilation and air conditioning (HVAC) systems, smart appliances, or batteries. The future of demand response greatly depends on its ability to prevent consumer discomfort and integrate human feedback into the control loop. Reinforcement learning is a potentially model-free algorithm that can adapt to its environment, as well as to human preferences by directly integrating user feedback into its control logic. Our review shows that, although many papers consider human comfort and satisfaction, most of them focus on single-agent systems with demand-independent electricity prices and a stationary environment. However, when electricity prices are modelled as demand-dependent variables, there is a risk of shifting the peak demand rather than shaving it. We identify a need to further explore reinforcement learning to coordinate multi-agent systems that can participate in demand response programs under demand-dependent electricity prices. Finally, we discuss directions for future research, e.g., quantifying how RL could adapt to changing urban conditions such as building refurbishment and urban or population growth.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
如意易形发布了新的文献求助10
1秒前
科研通AI5应助乐观画板采纳,获得10
1秒前
MchemG应助栀璃鸳挽采纳,获得10
1秒前
月5114完成签到 ,获得积分10
3秒前
共享精神应助务实豪采纳,获得10
3秒前
怕黑寻双发布了新的文献求助10
3秒前
学术乞丐感谢好心人完成签到 ,获得积分10
5秒前
徐凤年完成签到,获得积分10
5秒前
Carrots发布了新的文献求助10
6秒前
鞑靼完成签到 ,获得积分10
7秒前
斯寜应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
天天快乐应助科研通管家采纳,获得10
10秒前
就看最后一篇完成签到 ,获得积分10
10秒前
LUO发布了新的文献求助10
12秒前
橙橙完成签到,获得积分10
13秒前
14秒前
Sucrapipple完成签到,获得积分10
15秒前
vagabond完成签到 ,获得积分10
16秒前
JrPaleo101发布了新的文献求助10
17秒前
科研通AI5应助怕黑寻双采纳,获得10
18秒前
lielizabeth完成签到 ,获得积分0
18秒前
万能图书馆应助jitanxiang采纳,获得10
20秒前
务实豪发布了新的文献求助10
22秒前
22秒前
大方海白完成签到,获得积分20
24秒前
故里完成签到,获得积分10
25秒前
务实豪完成签到,获得积分10
26秒前
ralph_liu完成签到,获得积分10
27秒前
哈哈哈完成签到 ,获得积分10
27秒前
beloved完成签到 ,获得积分10
28秒前
g143关注了科研通微信公众号
28秒前
30秒前
Shyee完成签到 ,获得积分10
31秒前
coster完成签到,获得积分10
33秒前
大方海白发布了新的文献求助20
33秒前
34秒前
34秒前
绵绵完成签到 ,获得积分10
35秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784735
求助须知:如何正确求助?哪些是违规求助? 3329909
关于积分的说明 10243866
捐赠科研通 3045255
什么是DOI,文献DOI怎么找? 1671603
邀请新用户注册赠送积分活动 800486
科研通“疑难数据库(出版商)”最低求助积分说明 759424