Calendar and Cycle Aging of Commercial NCA Lithium-Ion Cells

淡出 阳极 材料科学 锂(药物) 电池(电) 锂离子电池 库仑法 电压 离子 核工程 电极 电化学 分析化学(期刊) 电气工程 化学 计算机科学 热力学 工程类 物理 物理化学 功率(物理) 内分泌学 有机化学 操作系统 医学 色谱法
作者
Peter Keil,Andreas Jossen
出处
期刊:Meeting abstracts 卷期号:MA2016-02 (6): 914-914
标识
DOI:10.1149/ma2016-02/6/914
摘要

In extensive experimental aging studies, focusing on the application of lithium-ion cells in electric vehicles, we have investigated the calendar and cycle aging of commercial 18650 lithium-ion cells with graphite anode and NCA cathode for almost three years. Calendar aging was examined by storing the cells at various states-of-charge (SoCs) and temperatures. Cycle aging was investigated for different charging and discharging loads at various temperatures, SoCs and cycle depths. For example, the impact of regenerative braking was examined by applying dynamic highway driving load profiles with different maximum recharging currents during braking periods [1]. To identify the dominant aging mechanisms for the different load conditions, the following non-invasive, non-destructive techniques were used: • Constant-current-constant-voltage capacity measurements • Differential voltage analysis (DVA) [2] • Coulometry [3,4] • DC pulse resistance measurements • Electrochemical impedance spectroscopy (EIS) Results for calendar aging In the storage tests, the capacity measurements exhibit SoC regions in which the capacity fade is similar. Hence, reducing the SoC does not reduce calendar aging in these regions. DVA discloses a strong correlation between the plateaus in the capacity fade and the plateaus in the anode potential. Together with the results from coulometry, anode side reactions are identified as the main driver of capacity fade from calendar aging. They cause an irreversible loss of cyclable lithium, which results in a shift in the electrode balancing. This shift also affects the pulse resistances at low SoC. Moreover, coulometry enables to analyze the reversible self-discharge for storage above 80% SoC. Results for cycle aging Larger cycle depths increase the capacity fade from cycle aging. EIS and pulse measurements demonstrate that the resistance increase also aggravates with larger cycle depths. Especially, deep discharging to 0% SoC massively increases the cell impedance. The results from EIS demonstrate that mainly the cathode resistances increase. Whereas calendar aging increases with temperature, the additional degradation from cycle aging decreases with higher temperature. For charging and discharging at different temperatures (0°C and 25°C), Figure 1 shows a strong degradation for the cells discharged with a dynamic highway driving profile at 0°C. The spectra from DVA reveal that the storage capabilities of the anode have remained largely intact. This demonstrates that discharging at low temperatures does not degrade the anode. A certain cathode degradation can be identified by EIS, but the predominant part of the capacity fade origins from a loss of cyclable lithium. From the aging mechanisms identified for calendar and cycle aging, strategies for optimal battery operation are derived. References [1] P. Keil, A. Jossen, Aging of lithium-ion batteries in electric vehicles: Impact of regenerative braking, in: 28th International Electric Vehicle Symposium (EVS28), Goyang, Korea, 2015, http://dx.doi.org/10.13140/ RG.2.1.3485.2320. [2] I. Bloom, A. N. Jansen, D. P. Abraham, J. Knuth, S. A. Jones, V. S. Battaglia, G. L. Henriksen, Journal of Power Sources, 139 (2), 295-303 (2005). [2] A. J. Smith, J. C. Burns, D. Xiong and J. R. Dahn, Journal of The Electrochemical Society, 158 (10), A1136-A1142 (2011). [3] R. D. Deshpande, P. Ridgway, Y. Fu, W. Zhang, J. Cai and V. Battaglia, Journal of The Electrochemical Society, 162 (3), A330-A338 (2015). Figure 1: Differential voltage spectra of the cells in new condition and after a cycling experiment with alternating temperatures. The location of the central graphite peak of the new cells is highlighted. The spectra of the aged cells contain vertical offsets for better clarity. Figure 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我爱学习发布了新的文献求助10
刚刚
十一发布了新的文献求助10
刚刚
1秒前
1秒前
1秒前
斯文败类应助lk采纳,获得10
1秒前
周周南发布了新的文献求助10
2秒前
3秒前
王绪威完成签到,获得积分20
4秒前
4秒前
Qing完成签到,获得积分10
5秒前
张伟发布了新的文献求助10
5秒前
wanci应助岑凤萧采纳,获得10
5秒前
6秒前
6秒前
yu发布了新的文献求助10
6秒前
努力学习完成签到,获得积分10
6秒前
细腻冷梅发布了新的文献求助10
6秒前
kidult完成签到,获得积分10
7秒前
张鑫发布了新的文献求助10
7秒前
李爱国应助KeYang采纳,获得10
8秒前
周周南完成签到,获得积分10
8秒前
8秒前
王绪威发布了新的文献求助10
8秒前
十一完成签到,获得积分10
9秒前
9秒前
lxw发布了新的文献求助10
9秒前
9秒前
ding应助蓝希彦采纳,获得10
9秒前
orixero应助卡卡采纳,获得10
11秒前
淡定的白柏完成签到 ,获得积分10
12秒前
Wiz111发布了新的文献求助20
12秒前
张伟完成签到,获得积分10
12秒前
Duke发布了新的文献求助30
13秒前
caiji完成签到,获得积分10
13秒前
14秒前
18秒前
18秒前
好好完成签到,获得积分10
19秒前
19秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Stereoelectronic Effects 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 840
Acylated delphinidin glucosides and flavonols from Clitoria ternatea 800
Logical form: From GB to Minimalism 500
Византийско-аланские отно- шения (VI–XII вв.) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4188023
求助须知:如何正确求助?哪些是违规求助? 3723948
关于积分的说明 11733830
捐赠科研通 3401286
什么是DOI,文献DOI怎么找? 1866474
邀请新用户注册赠送积分活动 923309
科研通“疑难数据库(出版商)”最低求助积分说明 834445