PET and MRI image fusion based on a dense convolutional network with dual attention

计算机科学 编码器 卷积神经网络 人工智能 特征(语言学) 模式识别(心理学) 图像融合 图像(数学) 编码(内存) 对偶(语法数字) 相似性(几何) 信息丢失 计算机视觉 艺术 哲学 文学类 操作系统 语言学
作者
Bicao Li,Jenq–Neng Hwang,Zhoufeng Liu,Chunlei Li,Zongmin Wang
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:151: 106339-106339 被引量:9
标识
DOI:10.1016/j.compbiomed.2022.106339
摘要

The fusion techniques of different modalities in medical images, e.g., Positron Emission Tomography (PET) and Magnetic Resonance Imaging (MRI), are increasingly significant in many clinical applications by integrating the complementary information from different medical images. In this paper, we propose a novel fusion model based on a dense convolutional network with dual attention (CSpA-DN) for PET and MRI images. In our framework, an encoder composed of the densely connected neural network is constructed to extract features from source images, and a decoder network is employed to generate the fused image from these features. Simultaneously, a dual-attention module is introduced in the encoder and decoder to further integrate local features along with their global dependencies adaptively. In the dual-attention module, a spatial attention block is leveraged to extract features of each point from encoder network by a weighted sum of feature information at all positions. Meanwhile, the interdependent correlation of all image features is aggregated via a module of channel attention. In addition, we design a specific loss function including image loss, structural loss, gradient loss and perception loss to preserve more structural and detail information and sharpen the edges of targets. Our approach facilitates the fused images to not only preserve abundant functional information from PET images but also retain rich detail structures of MRI images. Experimental results on publicly available datasets illustrate the superiorities of CSpA-DN model compared with state-of-the-art methods according to both qualitative observation and objective assessment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
司空大有发布了新的文献求助10
5秒前
5秒前
6秒前
赘婿应助mariawang采纳,获得10
7秒前
9秒前
lipppu发布了新的文献求助10
11秒前
Bravacristina完成签到,获得积分10
11秒前
13秒前
小樊应助kento采纳,获得50
14秒前
陈佳完成签到,获得积分10
17秒前
21秒前
23秒前
天明完成签到,获得积分10
24秒前
25秒前
25秒前
yumu发布了新的文献求助20
25秒前
28秒前
谦让夏寒发布了新的文献求助10
30秒前
31秒前
本凡发布了新的文献求助10
31秒前
上官若男应助核桃酥采纳,获得30
32秒前
子厝关注了科研通微信公众号
33秒前
mariawang发布了新的文献求助10
35秒前
39秒前
40秒前
shame完成签到,获得积分10
41秒前
奉宣室以何年完成签到,获得积分20
42秒前
45秒前
45秒前
45秒前
45秒前
完美世界应助简单采纳,获得10
46秒前
47秒前
晴晨完成签到 ,获得积分10
49秒前
烟花应助hxm采纳,获得10
50秒前
子厝发布了新的文献求助10
50秒前
zhuminghui发布了新的文献求助10
50秒前
hjg发布了新的文献求助10
51秒前
bkagyin应助欢喜的天空采纳,获得10
55秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776552
求助须知:如何正确求助?哪些是违规求助? 3322124
关于积分的说明 10208682
捐赠科研通 3037339
什么是DOI,文献DOI怎么找? 1666647
邀请新用户注册赠送积分活动 797603
科研通“疑难数据库(出版商)”最低求助积分说明 757893