A Novel Feature Engineering Method Based on Latent Representation Learning for Radiomics: Application in NSCLC Subtype Classification

计算机科学 特征(语言学) 无线电技术 人工智能 特征工程 代表(政治) 模式识别(心理学) 特征学习 机器学习 深度学习 哲学 语言学 政治 政治学 法学
作者
Fan Song,Jiaxin Tian,Peng Zhang,Chenbin Ma,Yangyang Sun,Youdan Feng,Tianyi Zhang,Yanli Lei,Yufang He,Zhongyu Cai,Yuanzhi Cheng,Guanglei Zhang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (1): 31-41 被引量:3
标识
DOI:10.1109/jbhi.2023.3290006
摘要

Radiomics refers to the high-throughput extraction of quantitative features from medical images, and is widely used to construct machine learning models for the prediction of clinical outcomes, while feature engineering is the most important work in radiomics. However, current feature engineering methods fail to fully and effectively utilize the heterogeneity of features when dealing with different kinds of radiomics features. In this work, latent representation learning is first presented as a novel feature engineering approach to reconstruct a set of latent space features from original shape, intensity and texture features. This proposed method projects features into a subspace called latent space, in which the latent space features are obtained by minimizing a unique hybrid loss function including a clustering-like loss and a reconstruction loss. The former one ensures the separability among each class while the latter one narrows the gap between the original features and latent space features. Experiments were performed on a multi-center non-small cell lung cancer (NSCLC) subtype classification dataset from 8 international open databases. Results showed that compared with four traditional feature engineering methods (baseline, PCA, Lasso and L2,1-norm minimization), latent representation learning could significantly improve the classification performance of various machine learning classifiers on the independent test set (all p<0.001). Further on two additional test sets, latent representation learning also showed a significant improvement in generalization performance. Our research shows that latent representation learning is a more effective feature engineering method, which has the potential to be used as a general technology in a wide range of radiomics researches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shineshine完成签到 ,获得积分10
3秒前
11完成签到,获得积分10
3秒前
linfordlu完成签到,获得积分0
4秒前
英俊的铭应助科研通管家采纳,获得10
5秒前
Akim应助科研通管家采纳,获得10
6秒前
酷波er应助科研通管家采纳,获得30
6秒前
人参跳芭蕾完成签到 ,获得积分10
6秒前
yiluyouni完成签到,获得积分10
6秒前
6秒前
紫色哀伤完成签到,获得积分10
7秒前
萧秋灵完成签到,获得积分10
8秒前
吃人陈完成签到,获得积分10
10秒前
LSQ完成签到 ,获得积分10
10秒前
setid完成签到 ,获得积分10
11秒前
ryan1300完成签到 ,获得积分10
11秒前
Tianju完成签到,获得积分0
11秒前
独特的凝云完成签到 ,获得积分10
11秒前
科研通AI2S应助11采纳,获得10
11秒前
t通应助FJ采纳,获得10
13秒前
bkagyin应助FJ采纳,获得10
13秒前
阳光的易真完成签到,获得积分10
13秒前
碧蓝的蜻蜓完成签到 ,获得积分10
13秒前
快乐学习每一天完成签到 ,获得积分10
14秒前
大哥我猪呢完成签到,获得积分20
15秒前
清修完成签到,获得积分10
16秒前
xue完成签到 ,获得积分10
16秒前
左丘冥完成签到,获得积分10
19秒前
Luchy完成签到,获得积分10
19秒前
nove999完成签到 ,获得积分10
20秒前
sinlar完成签到,获得积分10
20秒前
21秒前
hzauhzau完成签到,获得积分10
21秒前
单薄广山完成签到,获得积分10
23秒前
24秒前
Sarlang完成签到,获得积分10
24秒前
麦麦完成签到,获得积分10
25秒前
Xtay完成签到 ,获得积分10
26秒前
聪明的宛菡完成签到,获得积分10
27秒前
小二郎应助小猪佩奇采纳,获得10
28秒前
段段砖应助大婧采纳,获得10
28秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792652
求助须知:如何正确求助?哪些是违规求助? 3336874
关于积分的说明 10282421
捐赠科研通 3053766
什么是DOI,文献DOI怎么找? 1675684
邀请新用户注册赠送积分活动 803701
科研通“疑难数据库(出版商)”最低求助积分说明 761510