Exploring contrast generalisation in deep learning-based brain MRI-to-CT synthesis

对比度(视觉) 人工智能 核医学 生物医学工程 核磁共振 计算机科学 放射科 医学 物理
作者
Lotte Nijskens,Cornelis A. T. van den Berg,Joost J.C. Verhoeff,Matteo Maspero
出处
期刊:Physica Medica [Elsevier BV]
卷期号:112: 102642-102642 被引量:6
标识
DOI:10.1016/j.ejmp.2023.102642
摘要

Synthetic computed tomography (sCT) has been proposed and increasingly clinically adopted to enable magnetic resonance imaging (MRI)-based radiotherapy. Deep learning (DL) has recently demonstrated the ability to generate accurate sCT from fixed MRI acquisitions. However, MRI protocols may change over time or differ between centres resulting in low-quality sCT due to poor model generalisation. investigating domain randomisation (DR) to increase the generalisation of a DL model for brain sCT generation. CT and corresponding T1-weighted MRI with/without contrast, T2-weighted, and FLAIR MRI from 95 patients undergoing RT were collected, considering FLAIR the unseen sequence where to investigate generalisation. A "Baseline" generative adversarial network was trained with/without the FLAIR sequence to test how a model performs without DR. Image similarity and accuracy of sCT-based dose plans were assessed against CT to select the best-performing DR approach against the Baseline. The Baseline model had the poorest performance on FLAIR, with mean absolute error (MAE) = 106 ± 20.7 HU (mean ±σ). Performance on FLAIR significantly improved for the DR model with MAE = 99.0 ± 14.9 HU, but still inferior to the performance of the Baseline+FLAIR model (MAE = 72.6 ± 10.1 HU). Similarly, an improvement in γ-pass rate was obtained for DR vs Baseline. DR improved image similarity and dose accuracy on the unseen sequence compared to training only on acquired MRI. DR makes the model more robust, reducing the need for re-training when applying a model on sequences unseen and unavailable for retraining.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
zZ发布了新的文献求助10
2秒前
3秒前
iii完成签到,获得积分20
3秒前
充电宝应助优美行云采纳,获得10
3秒前
小鲤瑜跃龙门完成签到,获得积分10
4秒前
5秒前
科研通AI6应助zzcc采纳,获得10
5秒前
星辰大海应助发嗲的成败采纳,获得10
5秒前
蓝颜完成签到,获得积分10
6秒前
丁丁发布了新的文献求助10
8秒前
8秒前
11秒前
啊哦呃完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
12秒前
TRISTE完成签到 ,获得积分10
14秒前
鸡蛋花干夹馍完成签到,获得积分20
14秒前
翻斗花园612完成签到,获得积分10
15秒前
Jade张完成签到,获得积分10
16秒前
17秒前
桐桐应助Wait采纳,获得10
17秒前
王旭完成签到,获得积分10
19秒前
柒柒发布了新的文献求助10
21秒前
不配.应助iii采纳,获得30
21秒前
倩倩应助丁丁采纳,获得10
21秒前
21秒前
YHYHYH完成签到,获得积分10
24秒前
柒柒完成签到,获得积分0
25秒前
哈里发发布了新的文献求助10
26秒前
27秒前
李健应助楼翩跹采纳,获得20
29秒前
量子星尘发布了新的文献求助10
30秒前
研友_VZG7GZ应助biolbc采纳,获得10
31秒前
年轻的吐司完成签到,获得积分10
32秒前
哈里发完成签到,获得积分10
37秒前
卞威振完成签到 ,获得积分10
38秒前
脑洞疼应助科研通管家采纳,获得10
38秒前
39秒前
Akim应助科研通管家采纳,获得10
39秒前
共享精神应助科研通管家采纳,获得10
39秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 1500
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
Picture Books with Same-sex Parented Families: Unintentional Censorship 380
Metals, Minerals, and Society 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4264229
求助须知:如何正确求助?哪些是违规求助? 3796783
关于积分的说明 11902699
捐赠科研通 3443297
什么是DOI,文献DOI怎么找? 1889352
邀请新用户注册赠送积分活动 940236
科研通“疑难数据库(出版商)”最低求助积分说明 844838