Exploring contrast generalisation in deep learning-based brain MRI-to-CT synthesis

对比度(视觉) 人工智能 核医学 生物医学工程 核磁共振 计算机科学 放射科 医学 物理
作者
Lotte Nijskens,Cornelis A. T. van den Berg,Joost J.C. Verhoeff,Matteo Maspero
出处
期刊:Physica Medica [Elsevier BV]
卷期号:112: 102642-102642 被引量:6
标识
DOI:10.1016/j.ejmp.2023.102642
摘要

Synthetic computed tomography (sCT) has been proposed and increasingly clinically adopted to enable magnetic resonance imaging (MRI)-based radiotherapy. Deep learning (DL) has recently demonstrated the ability to generate accurate sCT from fixed MRI acquisitions. However, MRI protocols may change over time or differ between centres resulting in low-quality sCT due to poor model generalisation. investigating domain randomisation (DR) to increase the generalisation of a DL model for brain sCT generation. CT and corresponding T1-weighted MRI with/without contrast, T2-weighted, and FLAIR MRI from 95 patients undergoing RT were collected, considering FLAIR the unseen sequence where to investigate generalisation. A "Baseline" generative adversarial network was trained with/without the FLAIR sequence to test how a model performs without DR. Image similarity and accuracy of sCT-based dose plans were assessed against CT to select the best-performing DR approach against the Baseline. The Baseline model had the poorest performance on FLAIR, with mean absolute error (MAE) = 106 ± 20.7 HU (mean ±σ). Performance on FLAIR significantly improved for the DR model with MAE = 99.0 ± 14.9 HU, but still inferior to the performance of the Baseline+FLAIR model (MAE = 72.6 ± 10.1 HU). Similarly, an improvement in γ-pass rate was obtained for DR vs Baseline. DR improved image similarity and dose accuracy on the unseen sequence compared to training only on acquired MRI. DR makes the model more robust, reducing the need for re-training when applying a model on sequences unseen and unavailable for retraining.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
入暖完成签到,获得积分10
刚刚
想吃芝士焗饭完成签到 ,获得积分10
刚刚
2秒前
che完成签到,获得积分10
3秒前
7秒前
固的曼发布了新的文献求助20
7秒前
WeiSS发布了新的文献求助10
8秒前
机智灵薇完成签到,获得积分10
10秒前
yellow完成签到,获得积分10
10秒前
FG发布了新的文献求助10
11秒前
断章发布了新的文献求助100
11秒前
科研通AI5应助幽凡采纳,获得30
12秒前
画画完成签到,获得积分10
13秒前
16秒前
Yolo发布了新的文献求助20
17秒前
丘比特应助栓牛哥采纳,获得10
18秒前
时尚的初柔完成签到,获得积分10
20秒前
wing完成签到 ,获得积分10
20秒前
TRY驳回了Ava应助
22秒前
深情安青应助WHG采纳,获得10
22秒前
木火应助hello采纳,获得20
23秒前
24秒前
慕青应助洽洽采纳,获得10
24秒前
Tinsulfides发布了新的文献求助10
28秒前
28秒前
28秒前
阿芙乐尔完成签到 ,获得积分10
29秒前
29秒前
jjj应助jerry_zr采纳,获得10
29秒前
袁钰琳完成签到 ,获得积分10
29秒前
1111完成签到,获得积分10
30秒前
Tinsulfides完成签到,获得积分10
32秒前
阿布发布了新的文献求助10
33秒前
土豆侠发布了新的文献求助10
34秒前
35秒前
37秒前
40秒前
41秒前
43秒前
李爱国应助忆往昔采纳,获得10
44秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3783335
求助须知:如何正确求助?哪些是违规求助? 3328584
关于积分的说明 10237467
捐赠科研通 3043806
什么是DOI,文献DOI怎么找? 1670653
邀请新用户注册赠送积分活动 799811
科研通“疑难数据库(出版商)”最低求助积分说明 759139