Multi-UAV-Assisted Federated Learning for Energy-Aware Distributed Edge Training

计算机科学 强化学习 Lyapunov优化 分布式计算 能源消耗 边缘计算 边缘设备 移动边缘计算 GSM演进的增强数据速率 人工智能 实时计算 云计算 生物 操作系统 Lyapunov重新设计 李雅普诺夫指数 混乱的 生态学
作者
Jianhang Tang,Jiangtian Nie,Yang Zhang,Zehui Xiong,Wenchao Jiang,Mohsen Guizani
出处
期刊:IEEE Transactions on Network and Service Management [Institute of Electrical and Electronics Engineers]
卷期号:21 (1): 280-294 被引量:26
标识
DOI:10.1109/tnsm.2023.3298220
摘要

Unmanned aerial vehicle (UAV)-assisted mobile edge computing (MEC) has largely extended the border and capacity of artificial intelligence of things (AIoT) by providing a key element for enabling flexible distributed data inputs, computing capacity, and high mobility. To enhance data privacy for AIoT applications, federated learning (FL) is becoming a potential solution to perform training tasks locally on distributed IoT devices. However, with the limited onboard resources and battery capacity of each UAV node, optimization is required to achieve a large-scale and high-precision FL scheme. In this work, an optimized multi-UAV-assisted FL framework is designed, where regular IoT devices are in charge of performing training tasks, and multiple UAVs are leveraged to execute local and global aggregation tasks. An online resource allocation (ORA) algorithm is proposed to minimize the training latency by jointly deciding the selection decisions of clients and a global aggregation server. By leveraging the Lyapunov optimization technique, virtual energy queues are studied to depict the energy deficit. With the help of the actor-critic learning framework, a deep reinforcement learning (DRL) scheme is designed to improve per-round training performance. A deep neural network (DNN)-based actor module is designed to derive client selection decisions, and a critic module is proposed through a conventional optimization method to evaluate the obtained selection decisions. Moreover, a greedy scheme is developed to find the optimal global aggregation server. Finally, extensive simulation results demonstrate that the proposed ORA algorithm can achieve optimal training latency and energy consumption under various system settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
lmh完成签到,获得积分10
刚刚
醋酸柠檬完成签到,获得积分10
2秒前
包容的映天完成签到 ,获得积分10
2秒前
乾乾完成签到,获得积分10
3秒前
111应助勤劳尔容采纳,获得10
3秒前
浮游应助谁在说话采纳,获得10
3秒前
wuyisha完成签到,获得积分10
3秒前
充电宝应助lou采纳,获得10
3秒前
蝈蝈发布了新的文献求助10
4秒前
乐乐完成签到,获得积分10
4秒前
luoluo完成签到,获得积分10
4秒前
研友_Z6kxK8发布了新的文献求助10
5秒前
5秒前
噜噜噜噜噜完成签到,获得积分10
5秒前
想看不眠日记完成签到,获得积分10
6秒前
自信的昊焱完成签到,获得积分10
6秒前
hqhbj77完成签到,获得积分10
6秒前
踏实谷蓝完成签到 ,获得积分10
6秒前
巫郁完成签到,获得积分10
6秒前
7秒前
Tuyen完成签到,获得积分10
7秒前
不想太多完成签到,获得积分10
7秒前
温婉的访风完成签到,获得积分10
7秒前
xianyu完成签到,获得积分10
7秒前
7秒前
8秒前
艾达乳酪块完成签到,获得积分10
8秒前
明天完成签到,获得积分10
10秒前
牛油果完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
猴王完成签到,获得积分10
10秒前
10秒前
爱科研的文西完成签到,获得积分10
10秒前
辰溪完成签到,获得积分10
11秒前
优雅的雁凡完成签到,获得积分10
11秒前
顾矜应助yihua采纳,获得10
11秒前
挽忆逍遥发布了新的文献求助200
11秒前
玩命做科研完成签到,获得积分10
11秒前
Yurrrrt完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482836
求助须知:如何正确求助?哪些是违规求助? 4583525
关于积分的说明 14390528
捐赠科研通 4512908
什么是DOI,文献DOI怎么找? 2473262
邀请新用户注册赠送积分活动 1459272
关于科研通互助平台的介绍 1432886