Variable-Modulation Specific Emitter Identification With Domain Adaptation

计算机科学 发射机 正交调幅 编码器 人工智能 稳健性(进化) 电子工程 模式识别(心理学) 算法 电信 解码方法 频道(广播) 误码率 基因 操作系统 工程类 生物化学 化学
作者
Xinliang Zhang,Tianyun Li,Pei Gong,Xiong Zha,Renwei Liu
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:18: 380-395 被引量:19
标识
DOI:10.1109/tifs.2022.3223794
摘要

Specific emitter identification (SEI) is a technique of identifying individual emitters via unique characteristics of different emitters. In this paper, we consider a SEI problem with transmitter changing modulations scenario. There have been few previous studies on this type of scenario. To cope with the daunting challenge, a variable-modulation SEI framework with domain adaptation is proposed. The components characteristics of transmitter are analyzed and the distortion models are established for simulation dataset generation. The received in-phase/quadrature (I/Q) signals are demodulated and reconstructed to obtain baseband ideal modulation signals. The received signals and the ideal modulation signals corresponding to demodulation and reconstruction are merged and embedded into the feature extraction network. Domain adversarial neural network (DANN) is added into the SEI framework to generate domain-invariant fingerprint features, thus realizing variable-modulation SEI. To better align the distortion features of emitters with variable modulations, Gaussian Encoder is designed to project fingerprint features into Gaussian distribution space. Numerous experiments show that the proposed SEI framework can improve recognition accuracy of individual emitter for single modulation and variable transfer greatly, and outperform the existing transfer learning methods. The ablation study demonstrates the components of framework are complementary. The complexity of framework is acceptable and it can extend to large-scale use. The robustness of framework is verified through modulation transfer among PSK and QAM.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
晴朗的蓝发布了新的文献求助10
1秒前
1秒前
彭于晏应助笑点低诗桃采纳,获得10
1秒前
ninalee发布了新的文献求助10
1秒前
1秒前
科研通AI6应助舒心乐荷采纳,获得10
2秒前
provin完成签到,获得积分10
4秒前
不配.应助Glufo采纳,获得20
4秒前
星辰大海应助yuhang采纳,获得10
5秒前
6秒前
科研通AI6应助liuli采纳,获得10
6秒前
笨笨的复天完成签到,获得积分10
7秒前
8秒前
9秒前
乐乐应助爱科研的小导航采纳,获得10
9秒前
Huang发布了新的文献求助10
11秒前
lcs发布了新的文献求助30
11秒前
ninalee完成签到,获得积分10
12秒前
14秒前
15秒前
隐形曼青应助Glufo采纳,获得10
16秒前
17秒前
丹青完成签到 ,获得积分10
17秒前
viper3完成签到,获得积分10
18秒前
汉堡包应助珍妮采纳,获得10
19秒前
jeser完成签到,获得积分10
19秒前
20秒前
西西完成签到,获得积分10
20秒前
20秒前
21秒前
大海123发布了新的文献求助10
21秒前
Wanda发布了新的文献求助30
21秒前
22秒前
外星人完成签到,获得积分10
22秒前
22秒前
23秒前
24秒前
ray发布了新的文献求助10
24秒前
25秒前
科研通AI5应助王粒采纳,获得10
26秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Local Grammar Approaches to Speech Act Studies 5000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Functional High Entropy Alloys and Compounds 1000
Building Quantum Computers 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 900
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4224881
求助须知:如何正确求助?哪些是违规求助? 3758199
关于积分的说明 11813279
捐赠科研通 3419863
什么是DOI,文献DOI怎么找? 1876919
邀请新用户注册赠送积分活动 930347
科研通“疑难数据库(出版商)”最低求助积分说明 838581