Generalized few-shot object detection in remote sensing images

判别式 人工智能 计算机科学 目标检测 遥感 遗忘 光学(聚焦) 分类器(UML) 模式识别(心理学) 地理 语言学 光学 物理 哲学
作者
Tianyang Zhang,Xiangrong Zhang,Peng Zhu,Xiuping Jia,Xu Tang,Licheng Jiao
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:195: 353-364 被引量:61
标识
DOI:10.1016/j.isprsjprs.2022.12.004
摘要

Recently few-shot object detection (FSOD) in remote sensing images (RSIs) has drawn increasing attention. However, the current FSOD methods in RSIs merely focus on the detection performance of few-shot novel classes while ignoring the severe degradation of the base class performance. Generalized few-shot object detection (G-FSOD) aims to solve the FSOD problem without forgetting previous knowledge. In this paper, we focus on the G-FSOD in RSIs and propose a Generalized Few-Shot Detector (G-FSDet) that can learn novel knowledge without forgetting. Through the comprehensive analysis of each component in the detector, a novel efficient transfer-learning framework is presented as the foundation of our G-FSDet, which is more suitable for FSOD in remote sensing scenes. Considering the greater intra-class diversity and lower inter-class separability of geospatial objects, we design a metric-based discriminative loss to learn a more discriminative classifier in the few-shot fine-tuning stage. Furthermore, a representation compensation module is proposed to alleviate the catastrophic forgetting problem by decoupling the representation learning of previous and novel knowledge. Extensive experiments on DIOR and NWPU VHR-10.v2 datasets demonstrate that our proposed G-FSDet achieves competitive novel class performance with minor degradation in the base class, reaching state-of-the-art overall performance among all few-shot settings. The source code is available at (https://github.com/RSer-XDU/G-FSDet).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
开朗衬衫发布了新的文献求助10
1秒前
3秒前
3秒前
Sera发布了新的文献求助10
3秒前
夷则七发布了新的文献求助10
4秒前
CipherSage应助科研通管家采纳,获得10
6秒前
充电宝应助科研通管家采纳,获得10
6秒前
慕青应助科研通管家采纳,获得10
6秒前
李健应助科研通管家采纳,获得10
6秒前
酷波er应助科研通管家采纳,获得10
6秒前
汉堡包应助科研通管家采纳,获得10
6秒前
6秒前
深情安青应助科研通管家采纳,获得10
6秒前
慕青应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
ding应助科研通管家采纳,获得10
7秒前
SciGPT应助xiaxiaxia采纳,获得10
7秒前
完美世界应助科研通管家采纳,获得10
7秒前
田様应助科研通管家采纳,获得10
7秒前
在水一方应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
丘比特应助科研通管家采纳,获得10
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
8秒前
Mr.Ren发布了新的文献求助10
8秒前
9秒前
XYN1发布了新的文献求助10
9秒前
zz完成签到,获得积分10
9秒前
bkagyin应助夷则七采纳,获得10
9秒前
10秒前
万能图书馆应助QPL采纳,获得10
10秒前
10秒前
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2500
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4481820
求助须知:如何正确求助?哪些是违规求助? 3938121
关于积分的说明 12217060
捐赠科研通 3593206
什么是DOI,文献DOI怎么找? 1976071
邀请新用户注册赠送积分活动 1013207
科研通“疑难数据库(出版商)”最低求助积分说明 906426