博莱霉素
肺
肺纤维化
纤维化
肺移植
肠道菌群
免疫学
生物
发病机制
癌症研究
病理
医学
内科学
遗传学
化疗
作者
O.S. Chioma,Elizabeth K. Mallott,Austin Chapman,Joseph C. Van Amburg,Hongmei Wu,Binal Shah-Gandhi,Nandita Dey,Marina E. Kirkland,M. Blanca Piazuelo,Joyce E. Johnson,Gordon R. Bernard,Sobha R. Bodduluri,Steven E. Davison,Bodduluri Haribabu,Seth R. Bordenstein,Wonder P. Drake
标识
DOI:10.1038/s42003-022-04357-x
摘要
Abstract Independent studies demonstrate the significance of gut microbiota on the pathogenesis of chronic lung diseases; yet little is known regarding the role of the gut microbiota in lung fibrosis progression. Here we show, using the bleomycin murine model to quantify lung fibrosis in C57BL/6 J mice housed in germ-free, animal biosafety level 1 (ABSL-1), or animal biosafety level 2 (ABSL-2) environments, that germ-free mice are protected from lung fibrosis, while ABSL-1 and ABSL-2 mice develop mild and severe lung fibrosis, respectively. Metagenomic analysis reveals no notable distinctions between ABSL-1 and ABSL-2 lung microbiota, whereas greater microbial diversity, with increased Bifidobacterium and Lactobacilli , is present in ABSL-1 compared to ABSL-2 gut microbiota. Flow cytometric analysis reveals enhanced IL-6/STAT3/IL-17A signaling in pulmonary CD4 + T cells of ABSL-2 mice. Fecal transplantation of ABSL-2 stool into germ-free mice recapitulated more severe fibrosis than transplantation of ABSL-1 stool. Lactobacilli supernatant reduces collagen 1 A production in IL-17A- and TGFβ1-stimulated human lung fibroblasts. These findings support a functional role of the gut microbiota in augmenting lung fibrosis severity.
科研通智能强力驱动
Strongly Powered by AbleSci AI