亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Eco-evolutionary Guided Pathomic Analysis Detects Biomarkers to Predict Ductal Carcinoma In Situ Upstaging

导管癌 乳腺癌 生态位 生物 癌症 肿瘤异质性 肿瘤微环境 病理 肿瘤科 医学 内科学 生态学 栖息地
作者
Yujie Xiao,Manal Elmasry,Ji Dong K. Bai,Andrew Chen,Yuzhu Chen,Brooke Jackson,Joseph Johnson,Prateek Prasanna,Chao Chen,Mehdi Damaghi
出处
期刊:Cancer Research [American Association for Cancer Research]
标识
DOI:10.1158/0008-5472.can-24-2070
摘要

Abstract Cancers evolve in a dynamic ecosystem. Thus, characterizing the ecological dynamics of cancer is crucial to understanding cancer evolution, which can lead to the discovery of biomarkers to predict disease progression. Ductal carcinoma in situ (DCIS) is an early-stage breast cancer characterized by abnormal epithelial cell growth confined within the milk ducts, and biomarkers are needed to predict which cases will progress to aggressive disease. In this study, we showed that ecological analysis of hypoxia and acidosis biomarkers can significantly improve prediction of DCIS upstaging. Quantitative analyses were performed on immuno-histological images from a retrospective cohort of DCIS specimens collected from biopsy samples. First, an eco-evolutionary designed approach was developed to define habitats in the tumor intra-ductal microenvironment based on oxygen diffusion distance. Then, cancer cells with metabolic phenotypes attributed to their habitats were identified, including a hypoxia-responding CA9+ phenotype and an acid-adapted LAMP2b+ phenotype. While these markers have traditionally shown limited, if any, predictive capabilities for DCIS progression, when analyzed from an ecological perspective, their power to differentiate between non-upstaged and upstaged DCIS increased significantly. Additionally, the distribution of distinct niches with specific spatial patterns of these biomarkers predicted patient upstaging. The niches were characterized by pattern analysis of both cellular and spatial features. A random forest classifier that was trained and underwent a 5-fold validation on the biopsy cohort achieved an area under curve (AUC) of 0.74 for predicting clinical outcome. These results affirm the importance of tumor ecological features in eco-evolutionary-designed approaches for biomarker discovery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
平淡访冬完成签到 ,获得积分10
5秒前
丸子完成签到 ,获得积分10
5秒前
村民完成签到 ,获得积分10
7秒前
天天快乐应助科研通管家采纳,获得10
11秒前
yangzai完成签到 ,获得积分10
11秒前
华仔应助科研通管家采纳,获得10
11秒前
SciGPT应助科研通管家采纳,获得10
11秒前
852应助科研通管家采纳,获得10
11秒前
xiubo128完成签到 ,获得积分10
16秒前
茜茜完成签到 ,获得积分10
16秒前
For-t-完成签到 ,获得积分10
21秒前
赘婿应助Mona采纳,获得10
23秒前
凯文完成签到 ,获得积分10
28秒前
29秒前
xixi完成签到 ,获得积分10
32秒前
Mona发布了新的文献求助10
34秒前
爆米花完成签到,获得积分10
34秒前
34秒前
zho举报soso求助涉嫌违规
34秒前
田様应助赵振辉采纳,获得10
38秒前
98发布了新的文献求助10
41秒前
song完成签到,获得积分20
43秒前
香蕉觅云应助我是苯宝宝采纳,获得30
45秒前
song发布了新的文献求助10
45秒前
52秒前
悦yue完成签到,获得积分10
54秒前
55秒前
赵振辉发布了新的文献求助10
57秒前
悦yue发布了新的文献求助10
58秒前
YyyyyY发布了新的文献求助10
1分钟前
Hao完成签到,获得积分10
1分钟前
落忆完成签到 ,获得积分10
1分钟前
李木子完成签到 ,获得积分10
1分钟前
开霁完成签到 ,获得积分10
1分钟前
暮雪残梅完成签到 ,获得积分10
1分钟前
英姑应助YyyyyY采纳,获得10
1分钟前
1分钟前
1分钟前
宜下江南发布了新的文献求助10
1分钟前
galaxy完成签到 ,获得积分10
1分钟前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3807998
求助须知:如何正确求助?哪些是违规求助? 3352680
关于积分的说明 10359922
捐赠科研通 3068647
什么是DOI,文献DOI怎么找? 1685184
邀请新用户注册赠送积分活动 810332
科研通“疑难数据库(出版商)”最低求助积分说明 766022