已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A comprehensive review of physics-informed deep learning and its applications in geoenergy development

工程伦理学 工程类
作者
Nanzhe Wang,Yuntian Chen,Dongxiao Zhang
标识
DOI:10.59717/j.xinn-energy.2025.100087
摘要

<p>Deep learning models have been widely utilized in various scientific and engineering problems; however, their application still faces practical challenges, including high data volume requirements, limited physical consistency, and insufficient interpretability. Physics-informed deep learning (PIDL) has emerged as a promising paradigm to address these challenges by incorporating physical laws into the training process of deep learning models. By integrating data-driven approaches with physics-based constraints, PIDL enhances the accuracy and reliability of deep learning models, making it a powerful tool across diverse fields. Numerous variants of PIDL models have been developed to cater to different applications. This review provides a comprehensive examination of recent advancements in PIDL, with a particular focus on its applications in geoenergy development. We discuss key methodologies underlying PIDL, including weighting strategies in loss functions, network architectures, derivative calculations, and various forms of physical equations. Furthermore, we summarize the three most common application scenarios of PIDL models, including solving partial differential equations (PDEs), surrogate modeling, and inverse modeling. A series of case studies highlighting PIDL’s role in geoenergy development are also presented. Finally, current challenges and future directions of PIDL in the geoenergy field are summarized. This review aims to serve as a foundational and valuable resource for researchers and practitioners newly entering this field, while also highlighting the potential of PIDL in advancing geoenergy development.</p>
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
5秒前
8秒前
噗噗完成签到,获得积分10
9秒前
CHSLN完成签到 ,获得积分10
10秒前
胡茶茶完成签到 ,获得积分10
11秒前
芜湖完成签到 ,获得积分10
12秒前
风赴云扑发布了新的文献求助10
13秒前
香蕉觅云应助叶某还得学采纳,获得10
17秒前
18秒前
SS1025861完成签到 ,获得积分10
19秒前
我一进来就看到常威在打来福完成签到,获得积分10
20秒前
丰富平蝶发布了新的文献求助10
20秒前
梅槿完成签到 ,获得积分10
22秒前
六六六发布了新的文献求助10
24秒前
亓椰iko完成签到 ,获得积分10
25秒前
kyrie完成签到,获得积分10
26秒前
26秒前
科研通AI5应助丰富平蝶采纳,获得30
28秒前
君知完成签到,获得积分10
31秒前
paul发布了新的文献求助10
33秒前
lgs完成签到,获得积分10
34秒前
慕青应助lgs采纳,获得10
38秒前
六六六完成签到,获得积分10
43秒前
FashionBoy应助LUBBY采纳,获得20
48秒前
大帅比完成签到 ,获得积分10
49秒前
李潇潇完成签到 ,获得积分10
49秒前
Jenlisa完成签到 ,获得积分10
53秒前
脑洞疼应助六六六采纳,获得10
55秒前
丰富平蝶完成签到,获得积分10
1分钟前
Lucas应助科研通管家采纳,获得30
1分钟前
1分钟前
伊斯塔发布了新的文献求助10
1分钟前
酒渡完成签到,获得积分10
1分钟前
郭大侠完成签到,获得积分10
1分钟前
Ethan完成签到 ,获得积分0
1分钟前
h0jian09完成签到,获得积分10
1分钟前
天边道士完成签到,获得积分20
1分钟前
李健的粉丝团团长应助lll采纳,获得10
1分钟前
yhgz完成签到,获得积分10
1分钟前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Effect of deresuscitation management vs. usual care on ventilator-free days in patients with abdominal septic shock 200
Erectile dysfunction From bench to bedside 200
Advanced Introduction to Behavioral Law and Economics 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3824868
求助须知:如何正确求助?哪些是违规求助? 3367280
关于积分的说明 10444873
捐赠科研通 3086493
什么是DOI,文献DOI怎么找? 1698084
邀请新用户注册赠送积分活动 816632
科研通“疑难数据库(出版商)”最低求助积分说明 769848