亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Forecasting Global Tuberculosis Incidence Rates Using a Multi‐Variate Input, Multi‐Region, Multi‐Step Output Integrated Model: SP‐CTLA

随机变量 入射(几何) 计算机科学 数学 统计 几何学 随机变量
作者
Jian Hao,Yuxin Liang,H. Y. Zhao,Siyuan Li,Jingwei Shen
出处
期刊:Transactions in Gis [Wiley]
卷期号:29 (3)
标识
DOI:10.1111/tgis.70060
摘要

ABSTRACT Tuberculosis (TB) remains one of the leading global infectious diseases, causing millions of deaths each year, despite extensive efforts to control its spread. It continues to pose a significant public health challenge, particularly in low‐ and middle‐income countries, where factors such as poverty, malnutrition, and inadequate healthcare systems exacerbate the situation. As a result, precise and timely forecasting of global TB incidence is crucial to achieving the World Health Organization's (WHO) TB End Strategy and the United Nations' (UN) Sustainable Development Goals (SDGs). However, existing studies primarily focus on predicting TB incidence within a single region, often neglecting the broader regional or cross‐border factors that can significantly impact TB trends. This limitation arises because these studies fail to consider the spatial dependencies between countries, where the TB incidence rates of neighboring countries can influence each other. To address this issue, this study introduces an innovative approach by integrating spatial information, including national coordinates and the TB incidence rates of neighboring countries, along with socioeconomic, demographic, and environmental factors. Based on these factors, a multi‐variable input, multi‐country output, and multi‐time‐step forecasting model—Spatial‐CNN‐Transformer‐LSTM‐Attention (SP‐CTLA)—has been developed. The model demonstrated robust performance in both testing and Monte Carlo cross‐validation, with the following results: RMSE of 16.469, MAE of 9.282, and MAPE of 21.560%. In the testing set, the results were RMSE of 15.439, MAE of 8.327, and MAPE of 17.747%. The model forecasts TB incidence rates for 163 countries from 2024 to 2026, generating spatial distribution maps and identifying the top ten countries with the most significant increases and decreases in incidence. The projections suggest that 25 countries will achieve the WHO's 2025 TB End Strategy ahead of schedule, by 2026. This study identifies the top three factors influencing TB incidence rates: the incidence rates of neighboring countries, mean surface temperature, and the Mean NDVI value. The findings offer a novel forecasting model for global TB incidence rates, providing valuable insights for effective TB control strategies and contributing to the achievement of the WHO's TB End Strategy and the UN's SDGs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
奔跑的蒲公英完成签到,获得积分10
5秒前
21秒前
量子星尘发布了新的文献求助10
21秒前
25秒前
36秒前
量子星尘发布了新的文献求助10
45秒前
橘子气泡水完成签到 ,获得积分10
49秒前
科研通AI2S应助科研通管家采纳,获得10
51秒前
科研通AI5应助科研通管家采纳,获得10
51秒前
科研通AI5应助科研通管家采纳,获得10
51秒前
52秒前
54秒前
59秒前
1分钟前
1分钟前
MchemG完成签到,获得积分0
1分钟前
量子星尘发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
2分钟前
科研通AI5应助科研通管家采纳,获得10
2分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
Z17完成签到 ,获得积分10
4分钟前
科研通AI5应助科研通管家采纳,获得10
4分钟前
aldehyde应助科研通管家采纳,获得10
4分钟前
科研通AI5应助科研通管家采纳,获得10
4分钟前
aldehyde应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
思源应助科研通管家采纳,获得10
4分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
rockxie完成签到,获得积分10
5分钟前
5分钟前
量子星尘发布了新的文献求助10
5分钟前
量子星尘发布了新的文献求助10
6分钟前
沸腾的大海完成签到,获得积分10
6分钟前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2000
The Oxford Encyclopedia of the History of Modern Psychology 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Synthesis of 21-Thioalkanoic Acids of Corticosteroids 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Applied Survey Data Analysis (第三版, 2025) 850
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3883756
求助须知:如何正确求助?哪些是违规求助? 3426130
关于积分的说明 10746909
捐赠科研通 3150946
什么是DOI,文献DOI怎么找? 1739077
邀请新用户注册赠送积分活动 839598
科研通“疑难数据库(出版商)”最低求助积分说明 784720