Thymoma habitat segmentation and risk prediction model using CT imaging and K‐means clustering

胸腺瘤 聚类分析 医学影像学 人工智能 放射科 分割 医学 计算机科学 支持向量机 机器学习 病理
作者
Zhu Liang,Jiamin Li,Shuyan He,Siyuan Li,Rongtai Cai,Chun‐Yuan Chen,Yan Zhang,Biao Deng,Yanxia Wu
出处
期刊:Medical Physics [Wiley]
卷期号:52 (7): e17892-e17892 被引量:2
标识
DOI:10.1002/mp.17892
摘要

Abstract Background Thymomas, though rare, present a wide range of clinical behaviors, from indolent to aggressive forms, making accurate risk stratification crucial for treatment planning. Traditional methods such as histopathology and radiological assessments often lack the ability to capture tumor heterogeneity, which can impact prognosis. Radiomics, combined with machine learning, provides a method to extract and analyze quantitative imaging features, offering the potential to improve tumor classification and risk prediction. By segmenting tumors into distinct habitat zones, it becomes possible to assess intratumoral heterogeneity more effectively. This study employs radiomics and machine learning techniques to enhance thymoma risk prediction, aiming to improve diagnostic consistency and reduce variability in radiologists' assessments. Objective This study aims to identify different habitat zones within thymomas through CT imaging feature analysis and to establish a predictive model to differentiate between high and low‐risk thymomas. Additionally, the study explores how this model can assist radiologists. Methods We obtained CT imaging data from 133 patients with thymoma who were treated at the Affiliated Hospital of Guangdong Medical University from 2015 to 2023. Images from the plain scan phase, venous phase, arterial phase, and their differential images (subtracted images) were used. Tumor regions were segmented into three habitat zones using K‐Means clustering. Imaging features from each habitat zone were extracted using the PyRadiomics (van Griethuysen, 2017) library. The 28 most distinguishing features were selected through Mann–Whitney U tests (Mann, 1947) and Spearman's correlation analysis (Spearman, 1904). Five predictive models were built using the same machine learning algorithm (Support Vector Machine [SVM]): Habitat1, Habitat2, Habitat3 (trained on features from individual tumor habitat regions), Habitat All (trained on combined features from all regions), and Intra (trained on intratumoral features), and their performances were evaluated for comparison. The models' diagnostic outcomes were compared with the diagnoses of four radiologists (two junior and two experienced physicians). Results The AUC (area under curve) for habitat zone 1 was 0.818, for habitat zone 2 was 0.732, and for habitat zone 3 was 0.763. The comprehensive model, which combined data from all habitat zones, achieved an AUC of 0.960, outperforming the model based on traditional radiomic features (AUC of 0.720). The model significantly improved the diagnostic accuracy of all four radiologists. The AUCs for junior radiologists 1 and 2 increased from 0.747 and 0.775 to 0.932 and 0.972, respectively, while for experienced radiologists 1 and 2, the AUCs increased from 0.932 and 0.859 to 0.977 and 0.972, respectively. Conclusion This study successfully identified distinct habitat zones within thymomas through CT imaging feature analysis and developed an efficient predictive model that significantly improved diagnostic accuracy. This model offers a novel tool for risk assessment of thymomas and can aid in guiding clinical decision‐making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
泥泞完成签到 ,获得积分10
8秒前
CJY完成签到 ,获得积分10
11秒前
量子星尘发布了新的文献求助10
11秒前
领导范儿应助科研通管家采纳,获得10
17秒前
量子星尘发布了新的文献求助10
27秒前
聪明的雪珊完成签到 ,获得积分10
32秒前
李健应助mmyhn采纳,获得10
33秒前
冷冷完成签到 ,获得积分10
33秒前
冷艳的又蓝完成签到 ,获得积分10
33秒前
喵了个咪完成签到 ,获得积分10
34秒前
38秒前
胖豆儿完成签到 ,获得积分10
44秒前
抹茶拿铁加奶砖完成签到 ,获得积分0
44秒前
凉面完成签到 ,获得积分10
45秒前
46秒前
量子星尘发布了新的文献求助10
48秒前
甜甜信封完成签到,获得积分10
56秒前
海阔天空完成签到 ,获得积分10
57秒前
小白完成签到 ,获得积分10
58秒前
又又完成签到,获得积分10
1分钟前
沉静的清涟完成签到,获得积分10
1分钟前
笨笨忘幽完成签到,获得积分0
1分钟前
1分钟前
搜集达人应助fabricio10采纳,获得10
1分钟前
耍酷鼠标完成签到 ,获得积分0
1分钟前
CLTTT完成签到,获得积分0
1分钟前
跳跃的鹏飞完成签到 ,获得积分0
1分钟前
量子星尘发布了新的文献求助10
1分钟前
芙瑞完成签到 ,获得积分10
1分钟前
养花低手完成签到 ,获得积分10
1分钟前
knight7m完成签到 ,获得积分10
1分钟前
和尘同光完成签到,获得积分10
1分钟前
1分钟前
酷波er应助耶椰耶采纳,获得10
1分钟前
欢喜曼岚完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
elisa828完成签到,获得积分10
1分钟前
CipherSage应助耶椰耶采纳,获得10
1分钟前
喜悦向日葵完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
The Synthesis of Simplified Analogues of Crambescin B Carboxylic Acid and Their Inhibitory Activity of Voltage-Gated Sodium Channels: New Aspects of Structure–Activity Relationships 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5595982
求助须知:如何正确求助?哪些是违规求助? 4681102
关于积分的说明 14818361
捐赠科研通 4654879
什么是DOI,文献DOI怎么找? 2535740
邀请新用户注册赠送积分活动 1503583
关于科研通互助平台的介绍 1469846